No Image

Индикатор наличия тока в цепи

10 просмотров
12 декабря 2019

Н. ТАРАНОВ, г. Санкт-Петербург

При разработке различных радиоэлектронных устройств возникает проблема контроля наличия тока в их цепях. Готовые измерительные устройства часто отсутствуют, дороги или неудобны в обращении. В таких случаях применяются встроенные узлы контроля. Для переменного тока задача сравнительно просто решается с помощью токовых трансформаторов, индукционных магниточувствительных элементов и т. д. Для постоянного тока, как правило, эта задача сложнее. В статье рассмотрены некоторые существующие устройства контроля наличия постоянного тока в цепи (в дальнейшем будем называть их индикаторами постоянного тока, или сокращенно — ИПТ), их достоинства и недостатки, предложены схемотехнические решения, улучшающие характеристики этих устройств.

ИПТ как правило, включаются в разрыв контролируемой цепи. Некоторые ИПТ могут реагировать на магнитное поле, создаваемое токоведущими элементами контролируемой цепи [1], но при малых контролируемых токах они сложны и в данной статье не рассматриваются. ИПТ можно характеризовать следующими основными параметрами и особенностями:
1) дельтаU — падение напряжения на ИПТ во всем диапазоне контролируемых токов. Чтобы свести к минимуму влияние ИПТ на контролируемую цепь и уменьшить потери мощности, стремятся минимизировать дельтаU;
2) Iном номинальный рабочий ток (подразумевается среднее значение контролируемого тока);
3) Imin, Imax — границы диапазона изменения контролируемого тока, в котором надежно индицируется факт его наличия;
4) характер выходного сигнала индикации (свечение светодиода, ТТЛ-уровни и т. д.);
5) наличие или отсутствие дополнительных источников питания для ИПТ;
6) наличие или отсутствие гальванической связи выходного сигнала ИПТ с контролируемой цепью.

По виду токочувствительного элемента — датчика тока (ДТ) различают;
— ИПТ с последовательной нагрузкой в цепи;
— ИПТ с полупроводниковыми ДТ (датчиками Холла, магнитодиодами, магниторезисторами и т. д.);
— ИПТ магнитоконтактные (на герконах, на реле тока);
— ИПТ с магнитонасыщающимися элементами.

Принцип действия ИПТ с последовательной нагрузкой в цепи (рис. 1)

состоит в том, что в разрыв контролируемой цепи включается нагрузочный элемент (НЭ), на котором создается падение напряжения при протекании тока в контролируемой цепи. Оно поступает на преобразователь сигнала (ПС), где и преобразуется в сигнал индикации наличия тока в цепи.

Очевидно, что дельтаU для данного типа ИПТ зависит от величины контролируемого тока и от чувствительности ПС. Чем чувствительнее ПС, тем меньшее сопротивление НЭ можно применить, а значит, и дельтаU будет меньше.

В простейшем случае НЭ — резистор. Достоинство такого НЭ — простота, дешевизна. Недостатки — при малой чувствительности ПС будут велики потери мощности на НЭ, особенно при контроле больших токов, зависимость AU от величины протекающего через ИПТ тока. Она сужает диапазон изменения контролируемого тока (этот недостаток несущественен при контроле тока в узком диапазоне изменения его значения). В качестве примера рассмотрим практическую схему ИПТ данного типа. На рис. 2 показана схема индикатора наличия зарядного тока для аккумулятора. В качестве НЭ выступает резистор R1, а в качестве ПС — цепочка R2, HL1.

Балластный резистор R2 имеет сопротивление 100 Ом, светодиод HL1 имеет номинальный ток 10 мА (например, типа АЛ307Б), а сопротивление резистора R1 будет зависеть от величины контролируемого зарядного тока.

При стабилизированном зарядном токе 10 мА (например, для аккумулятора 7Д-01) резистор R1 можно исключить. При зарядном токе 1 А сопротивление резистора R1 будет примерно 3,5 Ом. Падение напряжения на ИТ в обоих случаях будет равно 3,5 В. Потери мощности при токе 1 А составят 3,5 Вт. Очевидно, что данная схема неприемлема при больших зарядных токах. Несколько снизить потери мощности на ИПТ можно, если уменьшить сопротивление балластного резистора R2. Но делать это нежелательно, поскольку при случайных бросках зарядных токов возможно повреждение светодиода HL1.

Если применить НЭ с нелинейной зависимостью падения напряжения от силы протекающего тока, можно значительно улучшить характеристики данного ИПТ. Например, хорошие результаты дает замена резистора R1 на цепочку из четырех диодов, включенных в прямом направлении, как показано на рис. 3.

В качестве диодов VD1—VD4 можно применить любые выпрямительные кремниевые диоды с допустимым рабочим током не менее значения контролируемого тока. (Для многих типов светодиодов достаточно цепочки из трех диодов). Сопротивление резистора R2 можно в этом случае уменьшить до значения в 30 Ом.

При такой схеме ИПТ диапазон контролируемых токов расширяется и простирается от 10 мА до Imax, где Imax — это максимально допустимый рабочий ток диодов. Яркость свечения светодиода HL1 практически постоянна во всем диапазоне контролируемых токов.

Другой путь улучшения характеристик ИПТ с последовательной нагрузкой в цепи — усовершенствование ПС. Действительно, если повысить чувствительность ПС и обеспечить его работоспособность в широком диапазоне изменения дельтаU, можно получить ИПТ с хорошими характеристиками. Правда, для этого придется усложнять схему ИПТ. В качестве примера рассмотрим разработанную автором схему ИПТ, показавшую хорошие результаты в устройствах контроля технологических процессов в промышленности. Этот ИПТ имеет следующие технические характеристики: диапазон рабочих токов— 0,01 мА. 1 А; дельтаU

НЭ в данной схеме — резистор R3. Вся остальная часть схемы — ПС. При отсутст вии тока между точками А и В на выходе операционного усилителя DA1 будет напряжение, близкое к -5 В, и светодиод HL1 не светится. При появлении тока между точками А и В на резисторе R3 создается напряжение, которое будет приложено между дифференциальными входами операционного усилителя DA1. В результате на выходе операционного усилителя DA1 появится положительное напряжение и светодиод HL1 будет светиться, индицируя наличие тока между точками А и В. При выборе операционного усилителя с большим коэффициентом усиления (например, КР1401УД2Б) надежная индикация наличия тока начинается уже с 5 мА. Конденсатор С1 необходим для устранения возможного самовозбуждения.

Следует учесть, что некоторые экземпляры ОУ могут иметь начальное напряжение смещения (любой полярности). При этом светодиод может засветиться и при отсутствии тока в контролируемой цепи. Устраняют этот недостаток введением цепи "коррекция нуля" ОУ, выполненной по любой стандартной схеме. Некоторые типы ОУ имеют специальные выводы для подключения переменного резистора "коррекция нуля".

Детали: резисторы R1, R2, R4, R5 — любого типа, мощностью 0,125 Вт; резистор R3 — любого типа, мощностью >0,5 Вт; конденсатор С1 — любого типа; операционный усилитель DA1 — любой, с коэффициентом усиления >5000, с выходным током >2,5 мА, допускающий однополярное питание напряжением 5 В. (Последние два требования обусловлены применением "удобного" напряжения питания ИПТ, хотя возможно применять и другие напряжения питания. При этом сопротивление балла стного резистора R5 надо будет пересчитать так, чтобы выходной ток операционного усилителя DA1 не превысил его максимально допустимое значение). Светодиод HL1 выбран таким из соображений достаточной яркости свечения при токе через него 2,5 мА. Эксперименты показали, что в данном устройстве прекрасно работает большинство миниатюрных импортных светодиодов (в принципе, тип светодиода определяется максимальным выходным током операционного усилителя DA1).

Читайте также:  Как наносить грунтовку на стены под покраску

Данное устройство с микросхемой КР1401УД2Б удобно при построении четырехканального ИПТ, например, при контроле раздельной зарядки одновременно четырех аккумуляторов. При этом цепь смещения R1, R2, а также точка А — общие для всех четырех каналов.

Устройство может контролировать и большие токи. Для этого надо уменьшить сопротивление резистора R3 и пересчитать его мощность рассеивания. Были проведены эксперименты с применением в качестве R3 отрезка провода ПЭВ-2. При диаметре провода 1 мм и его длине 10 см надежно индицировались токи в диапазоне 200 мА. 10 А (если увеличивать длину провода, нижняя граница диапазона перемещается к более слабым токам). При этом дельтаU не превышало 0,1 В.

При небольшой доработке устройство превращают в ИПТ с регулируемым порогом срабатывания (рис. 5).

Такой ИПТ с успехом можно применить в системах защиты различных устройств по току, в качестве основы для регулируемого электронного предохранителя и т. д.

Резистором R4 регулируют порог срабатывания ИПТ. В качестве R4 удобно применить многооборотный резистор, например, типов СП5-2, СПЗ-39 и т. д.

При необходимости обеспечения гальванической развязки между контролируемой цепью и устройствами контроля (УК) удобно использовать оптроны. Для этого достаточно вместо светодиода HL1 подключить оптрон, например, как показано на рис. 6.

Для согласования выходного сигнала данного ИПТ с цифровыми устройствами контроля применимы триггеры Шмитта. На рис. 7 показана схема согласования ИПТ с УК на ТТЛ-логике. Здесь +5 В УК — напряжение питания цифровых цепей УК.

ИПТ с полупроводниковыми ДТ подробно описаны в литературе. Для радиолюбителей представляет интерес использование в ИПТ магнитоуправляемых микросхем типа К1116КП1 [2] (данную микросхему широко применяли в клавиатуре некоторых ЭВМ советского производства). Схема такого ИПТ дана на рис. 8.

Обмотка L1 размещается на магнитопроводе из магнитомягкой стали (лучше из пермаллоя), который играет роль магнитного концентратора. Примерный вид и размеры магнитного концентратора показаны на рис. 9.

Микросхема DA1 помещается в зазор магнитного концентратора. При его изготовлении надо стремиться к уменьшению зазора. Были проведены эксперименты с различными магнитопроводами, в частности, применялись кольца, отрезанные от обычных водопроводных труб, выточенные из кернов динамических головок, набранные из шайб трансформаторной стали.

Самыми дешевыми и простыми в изготовлении (в любительских условиях) оказались кольца, нарезанные из водопроводных труб диаметром 1/2 и 3/4 дюйма. Кольца отрезались от труб так, чтобы длина кольца равнялась диаметру. Затем эти кольца желательно нагреть до температуры порядка 800 °С и медленно охладить на воздухе (сделать отжиг). Такие кольца практически не имеют остаточной намагниченности и хорошо работают в ИПТ.

Экспериментальный образец имел магнитопровод из водопроводной трубы диаметром 3/4 дюйма. Обмотка наматывалась проводом ПЭВ-2 диаметром 1 мм. При 10 витках Imin = 8 А, при 50 витках Imin = 2 А. Следует отметить, что чувствительность такого ИПТ зависит от положения микросхемы в зазоре магнитопровода. Это обстоятельство можно использовать для подстройки чувствительности ИПТ.

Наиболее эффективными оказались кольца из кернов от магнитных систем динамических головок, но их изготовление в любительских условиях затруднительно.

Для радиолюбителей несомненный интерес представляют электромагнитные ИПТ на герконах и на токовых реле. ИПТ на герконах надежны и дешевы. Принцип действия таких ИПТ поясняется рис. 10,а.

Подробнее о герконах можно узнать из [3]. Электрическая схема ИПТ с датчиком тока (ДТ) на герконе показана на рис. 10,б.

У многих радиолюбителей наверняка найдется старая клавиатура от ПЭВМ советского производства на герконах. Такие герконы прекрасно подходят для реализации ИПТ. Чувствительность ИПТ зависит от:
— числа витков в обмотке (при увеличении числа витков растет и чувствительность);
— конфигурации обмотки (оптимальна обмотка, длина которой примерно равна длине колбы геркона);
— соотношения внешнего диаметра геркона и внутреннего диаметра обмотки (чем оно ближе к 1, тем чувствительность ИПТ будет выше).

Автором проводились эксперименты с герконами КЭМ-2, МК-16-3, МК10-3. Наилучшие результаты по чувствительности показали герконы КЭМ-2. При намотке восьми витков провода ПЭВ-2 диаметром 0,8 мм без зазора ток срабатывания ИПТ равен 2 А, ток отпускания — 1,5 А. Падение напряжения на ИПТ при этом было 0,025 В. Чувствительность данного ИПТ можно регулировать перемещением геркона вдоль продольной оси обмотки. В промышленных ИПТ данного типа геркон перемещается с помощью винта либо помещается в немагнитную втулку с внешней резьбой, которая ввинчивается в катушку с обмоткой. Такой способ регулирования чувствительности не всегда удобен, а в любительских условиях трудновыполним. Кроме этого, данный способ допускает регулировку только в сторону уменьшения чувствительности ИПТ.

Автором был разработан способ, позволяющий изменять чувствительность ИПТ в широких пределах с помощью переменного резистора. При этом способе в конструкцию ДТ вводится дополнительная обмотка из провода ПЭВ-2 диаметром 0,06—0,1 мм с числом витков 200. Эту обмотку желательно намотать прямо на геркон по всей длине его баллона, как показано на рис. 11,а.

Электрическая схема ИПТ дана на рис. 11,б.

Обмотка L1 — основная, обмотка L2 — дополнительная. Если включить обмотки L1 и L2 согласно, то подстройкой резистора R1 удается повышать чувствительность ИПТ во много раз по сравнению с вариантом ИПТ, имеющим ДТ без дополнительной обмотки. Если же включить обмотки L1 и L2 встречно, то подстройкой резистора R можно уменьшать чувствительность ИПТ во много раз. Был проведен эксперимент с данной схемой при параметpax ее элементов:
— обмотка L1 — 200 витков провода ПЭВ-2 диаметром 0,06 мм; намотанных непосредственно на геркон типа КЭМ-2;
— обмотка L2 — 10 витков провода ПЭВ-2 диаметром 0,8 мм, намотанных поверх обмотки L1.

Получены следующие значения Imin:
— при согласном включении обмоток —0,1. 2 А;
— при встречном включении обмоток —2. 5 А.

ИПТ на реле тока имеют в качеств: ДТ электромагнитное реле с низкоомной обмоткой. К сожалению, реле тока весьма дефицитны. Реле тока можно изготовить из обычного реле напряжения путем замены его обмотки на низкоомную. Автором применялся ДТ, из готовленный из реле типа РЭС-10. Обмотку реле аккуратно срезают скальпелем, и на ее место наматывают новую обмотку проводом ПЭВ-2 диаметром 0,3 мм до заполнения каркаса. Чувствительность данного ДТ регулируют подбором числа витков и изменением жесткости плоской пружинки якоря. Жесткость пружинки можно изменять ее подгибанием или стачиванием по ширине. Экспериментальный образец ДТ имел Imin = 200 мА, дельтаU = 0,5 В (при токе 200 мА).

При необходимости расчетов реле тока можно обратиться к [4].

Электрическая схема ИПТ данного типа показана на рис. 12.

Представляют определенный интерес ИПТ с магнитонасыщающимися элементами. В них использовано свойство ферромагнитных сердечников изменять проницаемость при действии на них внешнего магнитного поля. В простейшем случает ИПТ такого типа представляет собой трансформатор переменного тока с дополнительной обмоткой, как показано на рис. 13.

Читайте также:  Как лучше распланировать дачный участок

Здесь переменное напряжение трансформируется из обмотки L2 в обмотку L3. Напряжение с обмотки L3 детектируется диодом VD1 и заряжает конденсатор С1. Далее оно подается на пороговый элемент. При отсутствии тока в обмотке L1 напряжения, создаваемого на конденсаторе С1, достаточно для срабатывания порогового элемента. При пропускании через обмотку L1 постоянного тока магнитопровод насыщается. Это приводит к уменьшению коэффициента передачи переменного напряжения из обмотки L2 в обмотку L3 и снижению напряжения на конденсаторе С1. При достижении им некоторого значения происходит переключение порогового элемента. Дроссель L4 устраняет проникновение переменного напряжения измерительной цепи в контролируемую, а также устраняет шунтирование измерительной цепи проводимостями контролируемой цепи.

Чувствительность данного устройства можно регулировать:
— подбором количества витков обмоток L1, L2, L3;
— выбором типа магнитопровода трансформатора;
— регулировкой порога срабатывания порогового элемента.

Достоинства устройства — простота реализации, отсутствие механических контактов.

Существенный его недостаток — проникание переменного напряжения из ИПТ в контролируемую цепь (впрочем, в большинстве применений контролируемые цепи имеют блокировочные конденсаторы, что снижает этот эффект). Проникание переменного напряжения в контролируемую цепь уменьшается при увеличении отношения числа витков обмоток L2 и L3 к числу витков обмотки L1 и при увеличении индуктивности дросселя L4.

Экспериментальный образец ИПТ данного типа был собран на кольцевом магнитопроводе типоразмера К10x8x4 из феррита марки 2000НМ. Обмотка L1 имела 10 витков провода ПЭВ-2 диаметром 0,4 мм, обмотки L2 и L3 имели по 30 витков провода ПЭВ-2 диаметром 0,1 мм. Дроссель L4 намотан на таком же кольце и имел 30 витков провода ПЭВ-2 диаметром 0,4 мм. Диод VD1 — КД521 А. Конденсатор С1 — КМ6 емкостью 0,1 мкФ. В качестве порогового элемента использован один инвертор микросхемы К561ЛН1. На обмотку L2 подавалось напряжение ("меандр") прямоугольной формы частотой 10 кГц и амплитудой 5 В. Данный ИПТ надежно индицировал наличие тока в контролируемой цепи в диапазоне 10. 1000 мА. Очевидно, что для расширения диапазона контролируемых токов в сторону увеличения верхней границы необходимо увеличить диаметр провода обмоток L1 и L2, а также выбрать магнитопровод большего типоразмера.

Значительно лучшими параметрами обладает схема ИПТ данного типа, показанная на рис. 14.

Здесь магнитопровод трансформатора состоит из двух ферритовых колец, обмотки L1 и L3 намотаны на оба кольца, а обмотки L1 и L4 — на разные кольца так, чтобы наводимые в них напряжения взаимно компенсировались. Конструкция магнитопровода поясняется рис. 15.

Для наглядности сердечники разнесены, в реальной конструкции они прижаты друг к другу.

В ИПТ данного типа практически полностью отсутствует проникание переменного напряжения из измерительной цепи в контролируемую цепь и практически нет шунтирования измерительной цепи проводимостями контролируемой. Был изготовлен экспериментальный образец ИПТ, схема которого показана на рис. 16.

На инверторах D1.1—D1.3 собран генератор импульсов большой скважности (применение таких импульсов существенно снижает энергопотребление ИПТ). При отсутствии возбуждения в провод, соединяющий выводы 2, 3 микросхемы с резисторами R1, R2 и конденсатором С1, следует включить резистор сопротивлением 10. 100 кОм.

Элементы С2, СЗ, VD2, VD3 образуют выпрямитель с удвоением напряжения. Инвертор D1.4 совместно со светодиодом HL1 обеспечивает пороговую индикацию наличия импульсов на выходе трансформатора (обмотка L3).

В этом ИПТ были использованы ферритовые кольца марки ВТ (применяются в ячейках памяти ЭВМ) размерами 8x4x2 мм. Обмотки L2 и L3 имеют по 20 витков провода ПЭЛ-2 диаметром 0,1 мм, обмотки L1 и L4 — по 20 витков провода ПЭЛ-2 диаметром 0,3 мм.

Данный образец уверенно индицировал наличие тока в контролируемой цепи в диапазоне 40 мА. 1 А. Падение напряжения на ИПТ при токе в контролируемой цепи 1 А не превышало 0,1В. Резистором R4 можно регулировать порог срабатывания, что позволяет использовать данный ИПТ в качестве элемента схем защиты устройств от перегрузок.

ЛИТЕРАТУРА
1. Яковлев Н. Бесконтактные электроизмерительные приборы для диагностирования электронной аппаратуры. — Л.: Энергоатомиздат, Ленинградское отделение, 1990.

2. Микросхемы серии К1116. — Радио, 1990, № 6, с. 84; № 7, с. 73, 74; № 8, с. 89.

3. Коммутационные устройства радиоэлектронной аппаратуры. Под ред. Г. Я. Рыбина. — М.: Радио и связь, 1985.

4. Ступель Ф. Расчет и конструкция электромагнитных реле. — М.: Госэнергоиздат, 1950._

В роли датчика тока в этом устройстве применены два соединенных в прямом направлении диода. Падения напряжения на них хватает для того, что бы засветился светодиод-индикатор. Последовательно с светодиодом включено сопротивление, номинал которого должен быть выбран таким, что бы при максимальных значениях тока нагрузки, ток через светодиод не превысил допустимый. Максимальный прямой ток диодов должен быть как минимум в два раза больше максимального тока нагрузки. Светодиод подойдет абсолютно любой.

Благодаря малым габоритам, низкому потреблению электричества и невысокой потери мощности в цепи переменного напряжения 220В, радиолюбительская конструкция может быть легко встроено в стандартную бытовую розетку, удлинител, автоматический выключатель. Индикация позволяет отследить не только наличие превышения тока но и быстро зафиксировать пробой обмоток электродвигателей или повышенную механическую нагрузку на электроинструмент.

Датчик тока построен на самодельных герконовых реле К1 — К3, обмотки которых имеют разное количество витков, поэтому, контакты герконов срабатывают при разных номиналах протекающего тока. В этой схеме обмотка первого реле имеет наибольшее количество витков, поэтому, контакты К1.1 замкнуться раньше других контактов. При потребляемой нагрузкой токе от 2 А до 4 А будет гореть только светодиод HL1. При замкнутых К1.1, но разомкнутых контактов остальных герконов, ток питания светодиода HL1 будет идти по диодным цепочкам VD9 — VD12 и VD13 — VD16. При увеличении контролируемого параметра более 4 А начнут срабатывать контакты геркона К2.1 и загориться еще HL2 Обмотка КЗ имеет минимальное количество витков, поэтому контакты К3.1 замыкаються при I в нагрузке более 8 А.

Так как, обмотки самодельных герконовых реле имеют малое количество витков, нагрев обмоток практически отсутствует. Узел светодиодного индикатора тока получает питание от бестрансформаторного блока питания, выполненного на конденсаторе С1, токоограничительных сопротивлениях R1, R2, мостовом выпрямителе VD1 -VD4. Емкость С2 сглаживает пульсации выпрямленного напряжения.

Катушки герконов изготовлены из обмоточного провода диаметром 0,82 мм в один ряд. Чтобы не испортить стеклянный корпус геркона, витки обмоток лучше наматывать на гладкой части стального сверла диаметром 3,2 мм. Расстояние между витками 0,5 мм. Катушка реле К1 — 11 витков, К2 — 6 витков, К3 — всего 4 витка. Ток срабатывания контактов зависит не только от количества витков, но и от конкретного типа геркона и места расположения катушки на баллоне, когда катушка расположена по центру корпуса геркона, чувствительность наилучшая.

Изменяя число витков катушек можно подобрать другие значения индикации тока подключенных нагрузок, при которых будут светиться светодиоды. Для небольшой коррекции можно изменять положение катушки на корпусе геркона. После настройки катушки фиксируются каплями полимерного клея.

Читайте также:  Как правильно выбрать степлер

Предлагаемая радиолюбительская конструкция подойдет для световой индикации потребляемого тока (и мощности) нагрузкой, подсоединенной к переменной сети 220 В. Устройство включают в разрыв одного из сетевых проводов. Особенности конструкции — отсутствие источника питания и гальваническая развязка. Этого удалось достичь использованием ярких и токового трансформатора.

В состав схемы токового индикатора входят трансформатор Т1, два однополупериодных выпрямителя на VD1 и VD2 со сглаживающими емкостями С1 и С2. К первому выпрямителю подсоединены светодиоды HL1 и HL4, ко второму — HL2 и HL3. Параллельно HL2 — HL4 установлены подстроечные сопротивления R1 — R3. С помощью них можно регулировать выходной ток выпрямителя, при котором определенные светодиоды начинают гореть.

Когда ток нагрузки следует через первичную обмотку токового трансформатора Т1, во вторичной появляется переменное напряжение, которое выпрямляют выпрямители. Индикатор отрегулирован так, что при токе нагрузки ниже 0,5 А напряжения на выходах выпрямителей нехватает для свечения светодиодов. Если ток превысит этот уровень, начнётся слабое, но вполне заметное свечение светодиода HL1 (красного цвета). С ростом нагрузочного тока выходной ток выпрямителя также увеличивается. Если ток нагрузки достигнет уровня в 2 А, загорится светодиод HL2 (зелёного цвета), при токе выше 3-х А — HL3 (синего), а если ток будет более 4 А, начнёт гореть белый светодиод HL4. Домашние опыты показали, что устройство работоспособно до тока в нагрузке 12 А, для бытовых нужд этого вполне хватит, при этом ток протекающий через светодиоды не более 15-18 мА.

Все радиокомпоненты, кроме токового трансформатора, смонтированы на печатной плате из стеклотекстолита, чертёж которой показан на рисунке выше. В схеме индикатора используются подстроечные сопротивления СПЗ-19, емкости — оксидные, диоды можно взять любые маломощные выпрямительные, светодиоды — только повышенной яркости.

Токовый трансформатор сделан своими руками из понижающего трансформатора малогабаритного источника питания (120/12 В, 200 мА). Активное сопротивление первичной обмотки состовляет 200 Ом. Обмотки трансформатора намотаны в разных секциях. Для указанных выше параметров схемы число витков первичной обмотки трансформатора — три, провод должен быть в хорошей изоляции и рассчитан на сетевое напряжение и ток, потребляемый нагрузкой. Для изготовления трансформатора можно взять любой маломощный серийный понижающий трансформатор, например, ТП-121,ТП-112.

Для градуировки шкалы можно использовать амперметр переменного тока и понижающий трансформатор с напряжением вторичной обмотки 5-6 В и током до пары ампер. Изменяя номинал нагрузочного сопротивления, задают требуемый ток и подстроечными сопротивлениями добиваются зажигания соответствующего светодиода.

Правильная работа автомобильного аккумулятора — залог длительного срока ее эксплуатации и безопасной работы. Контроль режима зарядки-разрядки АКБ дает возможность вовремя предпринять меры, а также следить за правильной работой генератора, стартера и электропроводки автомобиля.

Индикатор контролирует падение напряжения на проводнике, соединяющем минусовой вывод АКБ с "Массой" автомобиля. Этот проводник подсоединен в классический резистивный измерительный мост R1—R5, что даает возможность снимать с него разнополярные сигналы и усиливать их с помощью операционного усилителя с однополярным питанием. В цепь отрицательной ОС ОУ DA1 подключены диоды VD1—VD4, которые расширяют пределы измеряемого тока, позволяя измерять даже ток потребления стартером при пуске двигателя автомобиля.

Регистрирующим инструментом является любой магнитоэлектрический миллиамперметр с шкалой с нулем посредине,например М733 с током полного отклонения стрелки в 50мкА. На шкале удобнее всего равномерно расположить три метки справа и слева от нуля: 5 А, 50 А и 500 А. Питает индикатор параметрический стабилизатор напряжения 6,6 В. Правый вывод сопротивления R5 оставляют постоянно подсоединенным к минусовому выводу батареи.

Для градуировки шкалы сначала подают питание непосредственно от батареи аккумуляторов и подстроечным сопротивлением R4 устанавливают стрелку микроамперметра на нуль. Затем при выключенном ключе зажигания подключаем плюсовой вывод батареи через мощное (около 60 Вт) сопротивление номиналом 2,4 Ом соединенное с корпусом автомобиля и подстроечным сопротивлением R7 устанавливают стрелку амперметра на отметку 5 А. После градуировки плюсовой вывод питания индикатора подсоединяем к плюсовому выводу бортовой сети автомобиля.

Если зарядное устройство (ЗУ) для автомобильных аккумуляторов не имеет амперметра, трудно гарантировать их надежную зарядку. Возможно ухудшение (пропадание) контакта на клеммах батареи, обнаружить которое достаточно трудно. Вместо амперметра предлагаю простой индикатор буквально из нескольких деталей. Он включается в разрыв "плюсового" провода от ЗУ к АБ.


Рис. 1. Индикатор тока заряда

Схема на рис.1 представляет собой транзисторный ключ VT1, включающий светодиод HL1, когда через R1 протекает заданный ток. В этом случае падения напряжения на резисторе R1 (более 0,6 В) достаточно для открывания транзистора VT1 и зажигания HL1. Для конкретного аккумулятора номинал R1 подбирается так, чтобы светодиод зажигался при требуемом зарядном токе. По яркости его свечения можно приблизительно оценить зарядный ток. Резистор R1 — проволочный, изготавливается из 6. 12 витков обмоточного провода диаметром 1 мм. Можно использовать проволоку с высоким удельным сопротивлением (нихром) или резистор промышленного изготовления, например, ПЭВР-10.


Рис. 2. Индикатор тока заряда на КР293КП4

На рис.2 показана аналогичная схема, но с применением оптоэлектронного ключа КР293КП4. Такие оптроны популярны сегодня среди радиолюбителей, они позволяют конструировать радиоэлектронные устройства с минимальным количеством элементов. Резистор, ограничивающий ток в цепи светодиода оптрона, не нужен, так как для уверенного срабатывания ключа необходимо напряжение на контактах 3,4 порядка 1,1. 1,5 В. Ток в этой цепи — 10. 15 мА. Особенность схемы — в подключении исполнительного устройства на оптронном ключе. Как видно из рисунка, вход оптрона (светодиод) включается у клеммы "+" ЗУ с одной стороны, и у соответствующей клеммы "+" АБ — с другой. Резистором, на котором падает напряжение, в данном случае является сам соединительный провод между ЗУ и АБ, имеющий длину 0,8. 1,5 м. При надежном контакте в клеммах, падения напряжения на нем достаточно для срабатывания оптронного ключа. Контакты 5, 6 VU1 замыкаются , в цепи HL1 течет ток, и светодиод горит.

При использовании этого индикатора в приборах с большим напряжением питания, например, для зарядки АБ грузовых автомобилей с напряжением бортовой сети 24 В, необходимо подобрать величину R1, чтобы ток через светодиод не превышал максимально допустимый.

Такие индикаторы тока можно применить и в других конструкциях, где необходим контроль тока нагрузки. Включаются они аналогичным способом — между нагрузкой и источником питания.

Комментировать
10 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
Adblock detector