No Image

Как проверить исправность электролитического конденсатора

СОДЕРЖАНИЕ
0 просмотров
12 декабря 2019

Проверка конденсаторов цифровым мультиметром

При конструировании и ремонте электронной техники часто возникает необходимость в проверке радиоэлементов, в том числе и конденсаторов.

В сети много рекомендаций о том, как проверить конденсатор омметром. Когда-то я и сам применял такую методику. О ней я ещё расскажу.

Но на данный момент могу утверждать точно, что достоверно определить исправность конденсатора можно лишь с помощью прибора, который способен измерить его электрическую ёмкость.

Перед тем, как начать проверку конденсатора необходимо определить его тип. Все они делятся на две группы:

Неполярные. К ним относятся конденсаторы, в которых диэлектриком является слюда, керамика, бумага, стекло, воздух. Как правило, их ёмкость невелика и лежит в пределах от нескольких пикофарад до единиц микрофарад.

Полярные. К полярным конденсаторам относятся все электролитические конденсаторы, как с жидким электролитом, так и твёрдым. Их ёмкость уже лежит в диапазоне от 0,1 до 100000 микрофарад.

Среди неисправностей конденсаторов можно выделить три основных:

Электрический пробой. Как правило, пробой вызван превышением допустимого рабочего напряжения на обкладках конденсатора.

Обрыв. При обрыве конденсатор электрически представляет собой два изолированных проводника не имеющих никакой ёмкости. Обычно обрыв образуется вследствие механического воздействия, тряски или вибрации. Его причиной может быть некачественная конструкция элемента, а также нарушение допустимых режимов эксплуатации.

Повышенная утечка. Изменение сопротивления диэлектрика между обкладками. При такой неисправности ёмкость конденсатора становится заметно ниже, он не способен сохранять заряд.

Список неисправностей у электролитических конденсаторов заметно шире. В основном это касается алюминиевых электролитических конденсаторов, которые очень активно используются для фильтрации пульсирующего напряжения во всевозможных выпрямителях.

Потеря ёмкости, повышенная утечка.

Как уже говорил, достоверно проверить исправность конденсатора можно лишь с помощью прибора, который способен измерить его ёмкость. Как правило, для этих целей применяются измерители индуктивности и ёмкости (LC-метры). Они довольно дороги.

Но, несмотря на это, можно найти доступный по цене мультиметр с функцией LC-метра. Например, в моей мастерской имеется мультитестер Victor VC9805A+.

Он имеет 5 пределов измерения и способен определить ёмкость в диапазоне от 20 нанофарад (20nF) до 200 микрофарад (200μF). С его помощью можно измерить ёмкость, как обычных неполярных конденсаторов, так и полярных электролитических.

20 нФ (20nF)

200 нФ (200nF)

2 мкФ (2μF)

20 мкФ (20μF)

200 мкФ (200μF)

Максимальный предел измерения ограничен значением в 200 микрофарад (мкФ), что не так уж и много, если учесть, что ёмкость электролитических конденсаторов порой доходит и до 10000 мкФ.

Измерительные щупы прибора подключаются к гнёздам измерения ёмкости (обозначается как Cx). При этом нужно соблюдать полярность их подключения.


Разъём измерения ёмкости (Сх)

На фото показан процесс измерения ёмкости конденсатора номиналом 100nF (0,1 мкФ). Для измерения выбран предел в 200 нанофарад.

Как видим, ёмкость соответствует той, что указана в маркировке на корпусе — 104,7nF. Конденсатор исправен.

А вот пример неисправного металлоплёночного конденсатора К73-17 на 100nF. Я его выявил совершенно случайно, полагал, что он полностью исправен.

Отмечу лишь то, что изначально я проверял данный конденсатор мультиметром в режиме омметра. Тогда я не обнаружил ничего подозрительного. На деле же он оказался неисправен, имел очень маленькую ёмкость, всего 737 пикофарад.

На следующем фото проверка этого же конденсатора универсальным тестером.

Именно поэтому для проверки конденсаторов стоит использовать тестер с функцией замера ёмкости. Это даст наиболее достоверный результат.

Исключением может быть электрический пробой, который легко обнаружить с помощью омметра, а порой и чисто визуально при внешнем осмотре. Вот пример.

На фото пробитый неполярный конденсатор на рабочее напряжение 1,2kV.

При значительном превышении рабочего напряжения на конденсаторе, между его обкладками происходит электрический пробой. На корпусе пробитых конденсаторов можно обнаружить потемнения, вздутия, тёмные пятна и другие внешние признаки повреждения элемента.

Корпус может быть расколотым или иметь на поверхности сколы и трещины.

Электрический пробой конденсатора в электронной схеме преобразователя может стать причиной выхода из строя компактной люминесцентной лампы. Об этом я упоминал на странице про устройство ламп КЛЛ.

Стоит отметить тот факт, что пробой у алюминиевых электролитических конденсаторов встречается довольно редко. Обратная ситуация наблюдается у танталовых конденсаторов, которые в силу своих особенностей плохо выдерживают даже незначительное превышение рабочего напряжения.

При измерении ёмкости у электролитического конденсатора стоит знать одну особенность. Так как допуск у них очень большой, порой достигающий 30%, то разброс значения ёмкости может быть весьма приличный. В таком случае не стоит считать конденсатор негодным. Кроме этого, многое зависит от того, каким прибором пользуетесь.

Вот список реальной ёмкости новых конденсаторов. Измерения проводились универсальным тестером LCR-T4:

2200 μF (35V) — реальная 2155μF (Jamicon);

470 μF (25V) — реальная 420,9μF (EPCOS);

220 μF (400V) — реальная 217,7μF (SAMWHA);

100 μF (450V) — реальная 98,79μF (Jamicon);

100 μF (400V) — реальная 101,1μF (SAMWHA);

82 μF (400V) — реальная 75,65μF (Jamicon);

82 μF (450V) — реальная 77,46μF (SAMWHA);

82 μF (450V) — реальная 77,05μF (CapXon);

68 μF (450V) — реальная 66,43μF (Jamicon);

33 μF (160V) — реальная 31,99μF (SAMWHA);

22 μF (250V) — реальная 22,21μF (SAMWHA);

Как видим, самым некачественным оказался конденсатор EPCOS B41828 105 0 C 470μF(M)25V.

Эти же конденсаторы были проверены мультиметром Victor VC9805A+. Так вот, он показал ёмкость конденсаторов меньше. Для кондёра 220μF (400V) он вообще намерил 187μF!

Неисправность электролитического конденсатора можно определить при внешнем осмотре. Если корпус его имеет разрыв насечки в верхней части корпуса — 100% его надо менять. Разрыв защитной насечки на корпусе свидетельствует о том, что на конденсатор действовало завышенное напряжение, вследствие чего и произошёл, так называемый, "взрыв".

Как уже говорилось, пробой алюминиевых электролитических конденсаторов явление достаточно редкое. Вместо этого имеет место такой вот "взрыв" или "вздутие". Происходит это от того, что при превышении допустимого напряжения или при переполюсовке, в конденсаторе начинается бурная химическая реакция. Она приводит к нагреву и испарению электролита, пары которого давят на стенки корпуса и разрывают защитный клапан.


"Взорвавшийся" электролитический конденсатор

Такие дефекты конденсаторов появляются, например, при воздействии мощного электрического разряда на электронный прибор во время грозы или сильных скачков напряжения в электроосветительной сети 220V.

Аналогичный эффект "вздутия" алюминиевого электролитического конденсатора проявляется и при его длительной эксплуатации. Так как электролит жидкий, то он имеет свойство испаряться при нагреве и длительной эксплуатации.

Стоит отметить, что конденсатор нагревается не только снаружи, но и изнутри. Связано это с наличием эквивалентного последовательного сопротивления (ESR). При испарении электролита ёмкость конденсатора заметно снижается. Со временем он всё сильнее "вздувается". Про такой конденсатор говорят, что он высох.

Читайте также:  Из чего делают жвачку для рук

При ремонте электронной аппаратуры порой бывают случаи, что в блоке питания прибора, отслужившего не один год, можно обнаружить целую грядку таких "дутышей".

Потеря ёмкости может быть причиной поломки телевизора. Такая неисправность не редкость. Об одной из них я уже рассказывал здесь.

Современные ЖК-телевизоры "конденсаторная чума" также не обходит стороной. Ознакомьтесь.

В современных условиях, когда имеет место широкое распространение импульсной техники, такой параметр, как ESR необходимо учитывать при тестировании электролитических конденсаторов. На сайте имеется таблица со значениями ESR новых конденсаторов разной ёмкости. В некоторых случаях, можно ориентироваться на неё.

Но, стоит знать, что в этой таблице приведены величины ESR преимущественно для одной серии конденсаторов (Jamicon, серия TK). Эта серия не относится к конденсаторам с низким ESR или низким импедансом (Low ESR/Low Impedance). Отличительным её свойством является широкий температурный диапазон эксплуатации, а данные о ESR в даташите на серию вообще не приводятся.

Так как большинство мультиметров не поддерживают функцию замера ESR, то при необходимости лучше приобрести специализированный тестер или универсальный тестер радиокомпонентов. Это незаменимый прибор в мастерской радиолюбителя и любого радиомеханика.

Меры предосторожности при проверке электролитических конденсаторов.

При проверке электролитического конденсатора необходимо полностью его разрядить! Особенно этого правила стоит придерживаться при проверке конденсаторов, имеющих большую ёмкость и высокое рабочее напряжение. Если этого не сделать, то можно испортить измерительный прибор высоким остаточным напряжением.

Например, часто приходиться проверять исправность конденсаторов, которые применяются в импульсных блоках питания. Их ёмкость и рабочее напряжение достаточно велики и при неполном разряде могут привести к порче мультиметра.

Поэтому перед проверкой их следует обязательно разрядить, закоротив выводы накоротко (для низковольтных конденсаторов с малой ёмкостью). Сделать это можно обычной отвёрткой.


Электролитический конденсатор ёмкостью 220 мкФ и рабочим напряжением 400 вольт

Конденсаторы с ёмкостью более 100 мкФ и рабочим напряжением от 63V желательно разряжать уже через резистор сопротивлением 5-20 килоОм и мощностью 1 — 2 Вт. Для этого выводы резистора соединяют с выводами конденсатора на несколько секунд, чтобы убрать остаточный заряд с его обкладок. Разряд конденсатора через резистор применяется для того, чтобы исключить появление мощной искры.

При проведении данной операции не стоит касаться руками выводов конденсатора и резистора, иначе можно получить неприятный удар током при разряде обкладок. Резистор лучше зажать пассатижами в изоляции и уже тогда соединить его с выводами конденсатора.

При закорачивании выводов заряженного электролитического конденсатора проскакивает искра, иногда очень мощная.

Поэтому следует позаботиться о защите лица и глаз. По возможности применять защитные очки или держатся от конденсатора при проведении таких работ подальше.

Проверка конденсаторов с помощью омметра.

Самым доступным и распространённым прибором, с помощью которого можно провести тестирование конденсатора, является цифровой мультиметр, включенный в режим омметра.

Поскольку конденсатор не пропускает постоянный ток, то сопротивление между его выводами (обкладками) должно быть очень большим и ограничиваться лишь так называемым сопротивлением утечки. В реальном конденсаторе диэлектрик, несмотря на то, что он является изолятором, всё-таки пропускает незначительный ток. Обычно, этот ток очень мал и не учитывается. Он называется током утечки.

Данный способ подходит для проверки неполярных конденсаторов. У них сопротивление утечки бесконечно большое и, если измерить сопротивление между выводами такого конденсатора цифровым мультиметром, то прибор зафиксирует бесконечно большое значение.

Обычно, если у конденсатора присутствует электрический пробой, то сопротивление между его обкладками составляет довольно малую величину – несколько единиц или десятки Ом. Пробитый конденсатор, по сути, является обычным проводником.

На практике проверить на пробой любой неполярный конденсатор можно так:

Переключаем мультиметр в режим измерения сопротивления и устанавливаем самый большой из возможных пределов. Для цифровых мультитестеров серий DT-83x, MAS83x, M83x, это будет предел 2M (2000k), то бишь, 2 мегаома.

Далее подключаем измерительные щупы к выводам проверяемого конденсатора. Если он исправен, то прибор не покажет никакого значения и на дисплее засветиться единичка. Это свидетельствует о том, что сопротивление утечки более 2 мегаом.

Этого достаточно, чтобы в большинстве случаев судить об исправности конденсатора. Если цифровой мультиметр чётко зафиксирует какое-либо сопротивление, которое меньше 2 мегаом, то, скорее всего, конденсатор имеет большую утечку.

Следует учесть, что держаться обеими руками выводов конденсатора и металлических щупов мультиметра при измерении нельзя! В таком случае прибор зафиксирует сопротивление вашего тела, а не сопротивление конденсатора. Поскольку сопротивление тела человека меньше сопротивления утечки, то ток потечёт по пути наименьшего сопротивления, то есть через ваше тело по пути рука – рука. Результат измерения будет некорректный. Об этом простом правиле стоит помнить при проверке и других радиодеталей.

Проверка полярных электролитических конденсаторов с помощью омметра несколько отличается от проверки неполярных.

Сопротивление утечки полярных конденсаторов обычно составляет не менее 100 килоОм. Для более качественных конденсаторов это значение составляет не менее 1 мегаома.

При проверке таких конденсаторов омметром следует сначала их разрядить, замкнув выводы накоротко. Если этого не сделать, то есть риск сжечь мультиметр.

Далее необходимо установить предел измерения сопротивления не ниже 100 килоОм. Для упомянутых выше конденсаторов это будет предел 200k (200000 Ом). Далее соблюдая полярность подключения щупов, измеряют сопротивление утечки.

Так как электролитический конденсатор имеют довольно большую емкость, то при проверке он начнёт заряжаться. Этот процесс занимает несколько секунд, в течение которых сопротивление на цифровом дисплее будет расти — показания на нём будут увеличиваться. Это будет продолжаться до тех пор, пока конденсатор полностью не зарядится. Если значение измеряемого сопротивления перевалило за 100 килоОм, то в большинстве случаев можно с достаточной уверенностью судить об исправности проверяемого элемента.

Одной из рядовых неисправностей электролитических конденсаторов является частичная потеря ёмкости. В таких случаях его ёмкость заметно меньше, чем указанная на корпусе. Определить такую неисправность при помощи омметра сложно. Я бы сказал, что невозможно. Для точного обнаружения такой неисправности, как потеря ёмкости потребуется измеритель ёмкости, который есть не в каждом мультиметре.

Также с помощью омметра трудно обнаружить такую неисправность конденсатора как обрыв.

Для полярных электролитических конденсаторов косвенным признаком обрыва может служить отсутствие изменения показаний на дисплее мультиметра при замере сопротивления.

Читайте также:  Кабель для телевизионной антенны какой лучше

Для неполярных конденсаторов малой ёмкости обнаружить обрыв практически невозможно, поскольку исправный конденсатор имеет очень высокое сопротивление. Заряд ёмкости такого конденсатора проходит очень быстро и из-за этого невозможно определить имеет ли конденсатор хоть какую-то ёмкость. На дисплее мультиметра показания меняться не будут, как это происходит при заряде ёмкого электролитического конденсатора.

Как вы уже поняли, обнаружить обрыв в неполярном конденсаторе можно лишь с помощью прибора для измерения ёмкости.

На практике обрыв в конденсаторах встречается довольно редко, в основном такое бывает при механических повреждениях. Куда чаще при ремонте аппаратуры приходиться заменять конденсаторы, имеющие электрический пробой либо частичную потерю ёмкости.

Проверка конденсатора стрелочным омметром.

Ранее, когда среди радиолюбителей были распространены стрелочные омметры, проверка конденсаторов проводилась похожим образом. При этом конденсатор заряжался от батареи омметра и сопротивление, показываемое стрелкой прибора, росло. В конечном итоге величина его достигала значения сопротивления утечки.

По скорости отклонения стрелки измерительного прибора от нуля и до конечного значения оценивали и емкость электролитического конденсатора. Чем дольше проходила зарядка (дольше отклонялась стрелка прибора), тем, соответственно, была больше ёмкость. Для конденсаторов с небольшой ёмкостью (1 – 100 мкф) стрелка измерительного прибора отклонялась достаточно быстро, что свидетельствовало о небольшой ёмкости, а вот при проверке конденсаторов с ёмкостью от 1000 мкф и более, стрелка отклонялась значительно медленнее.

Проверка конденсаторов с помощью омметра является косвенным методом. Более точную и правдивую оценку об исправности конденсатора и его параметрах позволяет получить мультиметр с возможностью измерения электрической ёмкости.

Мультиметр – это электроизмерительное устройство с различными функциями. С его помощью можно проверять напряжение, силу тока, а также производные от этих величин – сопротивление и емкость. С помощью мультиметра можно проверить и работоспособность различных электронных компонентов. В этой статье мы с вами узнаем, как проверить мультиметром конденсатор и его емкость.

Конденсатор и емкость

Конденсаторы используются практически во всех микросхемах и являются частой причиной ее неработоспособности. Так что в случае неисправности устройства следует проверять в первую очередь именно этот элемент.

Виды конденсаторов по типу диэлектрика:

  • вакуумные;
  • с газообразным диэлектриком;
  • с неорганическим диэлектриком;
  • с органическим диэлектриком;
  • электролитические;
  • твердотельные.

Обычно используются электролитические конденсаторы

Основные неисправности конденсаторов:

  • Электрический пробой. Обычно вызван превышением допустимого напряжения.
  • Обрыв. Связан с механическими повреждениями, встрясками, вибрациями. Причиной может служить некачественная конструкция и нарушение эксплуатационных условий.
  • Повышенные утечки. Сопротивление между обкладками изменяется, и это приводит к низкой емкости конденсатора, которая не способна сохранять заряд.

Все эти причины приводят к тому, кто конденсатор становится непригодным для дальнейшего использования.

В данном случае присутствует протечка электролита

Перед проверкой конденсатора

Т.к. конденсаторы накапливают электрический заряд, перед проверкой их следует разряжать. Это можно сделать отверткой – жалом нужно прикоснуться к выводам, чтобы образовалась искра. Затем можно прозванивать компонент. Проверку конденсатора можно сделать как мультитестером, так и при помощи лампочек и проводов. Первый способ является более надежным и дает более точные сведения об электронном элементе.

До начала проверки следует осмотреть конденсатор. Если он имеет трещины, нарушение изоляции, подтеки или вздутие, поврежден внутренний электролит и прибор сломан. Его нужно поменять на работающее устройство. При отсутствии внешних повреждений придется использовать мультиметр.

Перед проведением измерений нужно определить вид конденсатора – полярный или неполярный. У первого обязательно должна соблюдаться полярность, иначе прибор выйдет из строя. Во втором случае определение плюсового и минусового выходов не требуется, но измерения будут проводиться по другой технологии.

Определить полярность можно по метке на корпусе. На детали должна быть черная полоса с обозначением нуля. Со стороны этой ножки расположен отрицательный контакт, а с противоположной – положительный.

Измерение емкости в режиме сопротивления

Переключатель мультиметра следует установить в режим сопротивления (омметра). В этом режиме можно посмотреть, есть ли внутри конденсатора обрыв или короткое замыкание. Для проверки неполярного конденсатора выставляется диапазон измерений 2 МОм. Для полярного изделия ставится сопротивление 200 Ом, так как при 2 МОм зарядка будет производиться быстро.

Сам конденсатор нужно отпаять от схемы и поместить его на стол. Щупами мультиметра нужно коснуться выводов конденсатора, соблюдая полярность. В неполярной детали соблюдать плюс и минус не обязательно.

Измерение в режиме сопротивления

Когда щупы прикоснутся к ножкам, на дисплее появится значение, которое будет возрастать. Это вызвано тем, что мультитестер будет заряжать компонент. Через некоторое время значение на экране достигнет единицы – это значит, что прибор исправен. Если при проверке сразу же загорается 1, внутри устройства произошел обрыв и его следует заменить. Нулевое значение на дисплее говорит о том, что внутри конденсатора произошло короткое замыкание.

Если проверяется неполярный конденсатор, значение должно быть выше 2. В ином случае прибор является не рабочим.

Аналоговое устройство

Вышеописанный алгоритм подходит для цифрового тестера. При использовании аналогового устройства проверка производится еще проще – нужно наблюдать лишь за ходом стрелки. Щупы подключаются так же, режим – проверка сопротивления. Плавное перемещение стрелки свидетельствует о том, что конденсатор исправен. Минимальное и максимальное значение при подключении говорят о поломке электронной детали.

Важно отметить, что проверка в режиме омметра производится для деталей с емкостью выше 0Ю25 мкФ. Для меньших номиналов используются специальные LC-метры или тестеры с высоким разрешением.

Измерение емкости конденсатора

Емкость является основной характеристикой конденсатора. Она указывается на внешней оболочке прибора, и при наличии тестера можно замерить реальное значение и сравнить его с номиналом.

Переключатель мультиметра переводится в диапазон измерений. Значение ставится равное или близкое к номиналу, указанному на компоненте. Сам конденсатор устанавливается в специальные отверстия –CX+ (если они есть на мультиметре) или с помощью щупов. Подключаются щупы так же, как и при измерении в режиме сопротивления.

При подключении щупов на мониторе должно появиться значение сопротивления. Если оно близко к номинальной характеристике, конденсатор исправен. Когда расхождение полученного и номинального значений отличаются более чем на 20% , устройство пробито, и его нужно поменять.

Измерение емкости через напряжение

Проверка работоспособности детали может производиться и при помощи вольтметра. Значение на мониторе сравнивается с номиналом, и из этого делается вывод об исправности устройства. Для проверки нужен источник питания с меньшим напряжением, чем у конденсатора.

Соблюдая полярность, нужно подключить щупы к выводам на несколько секунд для зарядки. Затем мультиметр переводится в режим вольтметра и проверяется работоспособность. На дисплее тестера должно появиться значение, схожее с номинальным. В ином случае прибор сломан.

Читайте также:  Из чего можно сделать нож своими руками

Другие способы проверки

Можно проверить конденсатор, не выпаивая его из микросхемы. Для этого нужно параллельно подключить заведомо исправный конденсатор с такой же емкостью. Если устройство будет работать, то проблема в первом элементе, и его следует поменять. Такой способ применим только в схемах с небольшим напряжением!

Иногда проверяют конденсатор на искру. Его нужно зарядить и металлическим инструментом с заизолированной рукояткой замкнуть выводы. Должна появиться яркая искра с характерным звуком. При малом разряде можно сделать вывод, что деталь пора менять. Проводить данное измерение нужно в резиновых перчатках. К этому методу прибегают для проверки мощных конденсаторов, в том числе пусковых, которые рассчитаны на напряжение более 200 Вольт.

Использовать способы проверки без специальных приборов нежелательно. Они небезопасны – при малейшей неосторожности можно получить электрический удар. Также будет нарушена объективность картины – точные значения не будут получены.

Сложности проверки

Основной сложностью при определении работоспособности конденсатора мультиметром является его выпаивание из схемы. Если оставить компонент на плате, на измерение будут влиять другие элементы цепи. Они будут искажать показания.

В продаже существуют специальные тестеры с пониженным напряжением на щупах, которые позволяют проверять конденсатор прямо на плате. Малое напряжение сводит к минимуму риск повреждения других элементов в цепи.

Как проверить емкость – видео ролики в Youtube

Отличное видео с описанием процесса проверки конденсаторов и поиска неисправностей от популярных ютуб-блогеров.

Электролитический конденсатор — наименее надежная радиодеталь, именно в нем чаще всего кроется причина неработоспособности электроприбора.

Иногда неисправное состояние данного элемента определяется визуально, но чаще приходится применять специальные методы.

Далее расскажем, как проверить электролитический конденсатор.

Особенности электролитических конденсаторов

  1. жидкий: обычно растворенная в воде смесь этиленгликоля, борной кислоты и борнокислого аммония;
  2. твердый: вязкая смесь из различных компонентов.

Диэлектриком служит оксидная пленка на поверхности металлической обкладки, образующаяся под влиянием электролита.

Недостаток электролитических конденсаторов — полярность: металлическая обкладка выступает только анодом (подключается к плюсу), электролит — катодом (к минусу). При обратной полярности оксидная пленка разрушается и в конденсаторе возникает проводимость между обкладками, что провоцирует вскипание электролита с последующим взрывом корпуса. Эту особенность учитывают при проверке.

Как проверить конденсатор

Иногда неисправность электролитического конденсатора выявляется без проверки — по вздутию или разрыву верхней крышки. Она намеренно ослаблена крестообразной просечкой и работает как предохранительный клапан, разрываясь при незначительном давлении. Без этого выделяющиеся из электролита газы разрывали бы корпус конденсатора с разбрызгиванием всего содержимого.

Но нарушения могут и не проявляться внешне. Вот какими они бывают:

  1. Из-за химических изменений снизилась емкость элемента. Например, конденсаторы с жидким электролитом высыхают, особенно при высокой температуре. Из-за этой особенности для них существуют ограничения по температуре эксплуатации (допустимый диапазон указан на корпусе).
  2. Произошел обрыв вывода.
  3. Появилась проводимость между обкладками (пробой). Собственно, она существует и в исправном состоянии — это так называемый ток утечки. Но при пробое эта величина из мизерной превращается в значительную.
  4. Снизилось максимально допустимое напряжение (обратимый пробой). Для каждого конденсатора существует критическое напряжение, вызывающее замыкание между обкладками. Оно указывается на корпусе. В случае снижения этого параметра элемент при проверке ведет себя, как исправный, потому что тестеры подают низкое напряжение, но в схеме — как пробитый.

Самый примитивный способ проверки конденсатора — на искру. Элемент заряжают, затем замыкают выводы металлическим инструментом с изолированной ручкой. На руки при этом желательно одеть резиновые перчатки. Исправный элемент разряжается с образованием искры и характерного треска, нерабочий — вяло и незаметно.

У данного способа два недостатка:

  1. опасность электротравмы;
  2. неопределенность: даже при наличии искры невозможно понять, соответствует ли фактическая емкость радиодетали номинальной.

Проверка мультиметром

Перед проверкой, конденсатор во избежание порчи мультиметра, необходимо разрядить. Низковольтные разряжают коротким замыканием выводов, высоковольтные — через резистор на 10 кОм, удерживаемый инструментом с изолированными ручками. Конденсаторы на платах разряжают дважды: до и после выпаивания.

Способ проверки зависит от типа мультиметра.

Прибор с функцией измерения емкости

На панели настроек у таких моделей имеется сектор «CX». Диапазон измерений меньше, чем у LC-метра (до 200 мкФ), но для самых распространенных элементов его достаточно.

Проверка выполняется просто:

  • переключатель мультиметра устанавливается в сектор «CX» на позицию с числовым значением, ближайшим большим по отношению к ожидаемой емкости;
  • выводы конденсатора подносятся к контактным площадкам в секторе «CX» либо их касаются щупами, вставленными в гнезда с такой же пометкой (в зависимости от модели);
  • на дисплее отобразится емкость.

Электролитические конденсаторы чувствительны к полярности. Гнезда «CX» и контактные площадки помечены значками «+» и «-». Отрицательный вывод конденсатора обозначается галочкой.

Приборы без функции измерения емкости

Такие модели используют в режиме омметра.

  • черный щуп включают в гнездо «COM» (отрицательный потенциал), красный — в «V/Ω» (положительный потенциал);
  • переключатель устанавливают в сектор «Ω» на позицию 2 МОм;
  • соблюдая полярность, касаются щупами выводов.

В режиме омметра мультиметр подает на щупы напряжение.

Оно заряжает конденсатор и сопротивление последнего, постепенно нарастает от мизерного до величины свыше 2 МОм или бесконечности (обозначается единицей на дисплее).

Рост сопротивления объективнее всего отражает аналоговый (стрелочный) тестер.

О неисправности свидетельствует такое поведение прибора, когда сопротивление:

  • сразу стало бесконечным: оборван вывод;
  • остановилось на отметке ниже 2 МОм: конденсатор пробит.

По времени, за которое сопротивление возрастает от минимума до максимума, путем сравнения с заведомо исправными конденсаторами, можно приблизительно определить емкость исследуемого.

Для проверки на обратимый пробой конденсатор подключают к лабораторному источнику постоянного тока с регулятором напряжения, последовательно с ним — мультиметр в режиме амперметра. Напряжение плавно увеличивают до максимально допустимого. Если в течение этого процесса тестер отобразит отличную от нуля силу тока, значит имеет место обратимый пробой.

Как проверить электролитический конденсатор не выпаивая

Сильно искажают показания обмотки трансформаторов и другие катушки индуктивности.

Для измерений применяют специальные приборы, использующие низкие напряжения. Это исключает повреждение других элементов. Для обычного мультиметра изготавливают приставку — схемы опубликованы в интернете.

Можно проверить радиодеталь следующим способом: параллельно ей впаивается заведомо исправный конденсатор с тем же номиналом. Если схема заработала, значит исследуемый элемент неработоспособен.

Чтобы проверить конденсатор, необязательно располагать специально предназначенным для этого прибором LC-метром. Пригодится и мультиметр. Главное не путать «плюс» с «минусом», если конденсатор электролитический.

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
Adblock detector