No Image

Как работает повышающий преобразователь

СОДЕРЖАНИЕ
0 просмотров
12 декабря 2019

Казалось бы, всё просто как бублик: слепили из простых и доступных ингредиентов генератор, присовокупили к нему повышающий трансформатор, мостик, всякие там дела. Вот, собственно, и всё — дело сделано, сказка сказана, можно закрывать тему.

— Но мы же не можем прямо тут. У нас же есть какие-то морально-этические принципы.
— Так сегодня ж понедельник!
— Понедельник, конечно, но не до такой же степени. Поэтому говорить будем много, нудно и обстоя- тельно.

А обсудим мы на этой странице повышающие преобразователи напряжения, не омрачённые такими редко любимыми в радиолюбительских кругах моточными изделиями, как силовые (или импульсные) трансформаторы.

Начнём с устройств, выполненных на цепях диодно-конденсаторных умножителей напряжения.


Рис.1

Простой преобразователь напряжения на одной К561ЛН2-микросхеме с минимальным числом навесных элементов можно собрать по схеме, приведённой на Рис.1. Преобразователь содержит задающий генератор, реализованный на первых двух инверторах КМОП микросхемы DD1, и буферного выходного каскада, предназначенного для увеличения выходного тока преобразователя и выполненного на включённых параллельно оставшихся элементов ИМС.
Диоды VD1, VD2, а так же конденсаторы С2, С3 образуют цепь удвоения напряжения.
При указанных на схеме номиналах элементов — генератор импульсов, работает на частоте 10 кГц. При напряжении питания 10В — выходное напряжение составляет 17В при токе нагрузки 5мА, 16В при токе 10мА, 14,5В при токе 15мА.
Значение КПД и величину выходного напряжения преобразователя можно увеличить за счёт использования в выпрямителе-умножителе напряжения германиевых диодов, либо диодов Шоттки.
А для получения отрицательного выходного напряжения — элементы удвоителя напряжения следует включить в соответствии с правой частью рисунка Рис.1.

Для увеличения мощности повышающих преобразователей между генератором и умножителем вводятся дополнительные биполярные или полевые транзисторы с максимальным допустимым током, превышающим ток нагрузки.


Рис.2

Устройство, представленное на Рис.2, образуют задающий генератор, собранный на логических элементах DD1.1 и DD1.2, буферные ступени DD1.3, DD1.4, усилители тока VT1, VT2 и выпрямитель-удвоитель напряжения на диодах VD1, VD2 и конденсаторах С2, СЗ.
При питании преобразователя от источника постоянного тока напряжением 12 В его выходное напряжение при токе нагрузки 30 мА будет около 22 В (напряжение пульсаций — 18 мВ).
При токе нагрузки 100 мА выходное напряжение уменьшается до 21 В, а при 250 мА — до 19,5 В.
Без нагрузки преобразователь потребляет от источника питания ток не более 2 мА.
Транзисторы VT1 и VT2 преобразователя могут быть любыми из указанных на схеме серий, а также ГТ402В или ГТ402Г, ГТ404В или ГТ404Г. С германиевыми транзисторами выходное напряжение преобразователя будет больше примерно на 1 В.

Для получения больших выходных напряжений применяются схемы преобразователей напряжения с многокаскадными умножителями.


Рис.3

На Рис.3 приведена схема экономичного преобразователя напряжения для питания варикапов, опубликованная в журнале Радио №10, 1984, И. Нечаевым.
«Преобразователь не содержит намоточных деталей, экономичен и прост в налаживании. Устройство состоит из генератора прямоугольных импульсов на микросхеме DD1, умножителя напряжения на диодах VD1-VD6 и конденсаторах СЗ-С8, параметрического стабилизатора напряжения на транзисторах VT1-VT3.
В качестве стабилитронов используются эмиттерные переходы транзисторов. Режим стабилизации наступает при токе 5. 10мкА.
Помимо указанных на схеме, в преобразователе можно использовать микросхемы К176ЛЕ5 и К176ЛА9, транзисторы КТ315, КТ316 с любым буквенным индексом, диоды Д9А, Д9В, Д9Ж. Конденсаторы С1-С7 — КЛС или KM, C8 — К50-6 или К50-3, резисторы МЛТ или ВС.
Налаживание преобразователя сводится к подбору транзисторов VT1 — VT3 с требуемым напряжением стабилизации.
При изменении напряжения питания приёмника от 6,5 до 9В потребляемый преобразователем ток увеличивается с 0,8 до 2,2мА, а выходное напряжение — не более чем на 8. 10мВ.
При необходимости выходное напряжение преобразователя можно повысить, увеличив число звеньев умножителя напряжения и число транзисторов в стабилизаторе».

В последнее время для преобразования напряжения всё чаще применяют импульсные преобразователи с использованием индуктивных накопителей энергии. Такие преобразователи отличаются высоким КПД и обладают возможностью получения повышенного, пониженного или инвертированного выходного напряжения.
Как это работает?


Рис.4

На рисунке Рис.4 (слева) изображён импульсный повышающий преобразователь напряжения, способный повышать выходное напряжение от напряжения источника питания до величины в десятки раз превышающей его.

При замыкании ключа, выполненного на транзисторе Т, через цепь: источник питания — индуктивность — замкнутый ключ начинает протекать ток. При этом, в связи с явлением самоиндукции, ток через индуктивность не может измениться моментально, так как в это время идёт постепенный запас энергии (ЭДС) в магнитном поле катушки.

При размыкании ключа — ток начинает течь по другому контуру: источник питания-индуктивность-диод-нагрузка. Поскольку источник питания и катушка в этой цепи соединены последовательно, то их ЭДС складываются. Таким образом происходит повышение напряжения.

Величина выходного напряжения подобных преобразователей малопредсказуема и зависит от нескольких факторов: сопротивления нагрузки, добротности катушки, и энергии, которая успела запастись в ней за время замыкания ключа. Именно поэтому напряжение в цепи без нагрузки может достигать значительных величин, порой приводящих к пробою ключевого транзистора.

Так как же регулировать напряжение на выходе таких преобразователей?
Очень просто — запасать в дросселе ровно столько энергии, сколько необходимо для того, чтобы создать необходимое напряжение на нагрузке. Производится это посредством регулировки длительности импульсов открывающих транзистор (временем в течении которого открыт транзистор).

Уровень выходного напряжения преобразователя описывается формулой Uвых = K×Uвх/(1-D), где
D — это величина, обратная скважности, и равная отношению периода времени, когда ключ открыт, к общему периоду импульсного сигнала, управляющего ключевым транзистором, а
К — коэффициент, прямо пропорциональный сопротивлению нагрузки и обратно пропорциональный сопротивлению открытого ключа, а также сопротивлению потерь катушки индуктивности.
У данного типа преобразователей полярность выходного напряжения, совпадает с полярностью входного.

На рисунке Рис.4 (справа) приведена упрощённая схема инвертирующего преобразователя напряжения, имеющего полезное свойство — работать как в режиме понижения напряжения, так и в режиме повышения.
Полярность его выходного напряжения противоположна полярности входного.

Так же как и в предыдущем случае, во время замыкания ключа Т происходит процесс накопления энергии катушкой индуктивности. Диод Д препятствует попаданию напряжению от источника питания в нагрузку.
Когда ключ закрывается, энергия индуктивности начинает перетекать в нагрузку. При этом ЭДС самоиндукции, направлена таким образом, что на концах катушки формируется полярность, противоположная первичному источнику питания. Т. е. на верхнем конце обмотки катушки формируется отрицательный потенциал, на противоположном конце — положительный.

Уровень выходного напряжения равен: Uвых = K×Uвх×D/(1-D).

С теорией завязываем, резко переходим к схемам электрическим принципиальным повышающих преобразователей напряжения с индуктивными накопителями на борту.


Рис.5

На Рис.5 приведена очень простая и красивая схема преобразователя напряжения 1,5 в 15 вольт, содержащая всего 2 транзистора, выполняющих как функцию генератора сигнала, управляющего ключевым транзистором, так и самого ключевого транзистора.
Вот что пишет автор конструкции, приведённой в зарубежном издании.

«В качестве источника используется элемент питания напряжением 1,5 В, а на выходе схемы получается напряжение 15 В. Схема ещё хороша тем, что очень проста для повторения и не имеет дефицитных деталей.
Рассмотрим принцип работы. Итак, при замыкании тумблера SA1 на резисторе R1 возникает падение напряжения. Как следствие, через базу транзистора VT1 потечёт ток и оба транзистора (VT1, VT2) будут находится в открытом состоянии. В начальный момент времени, на коллекторе VT2 будет практически нулевое напряжение и через него и катушку L1 потечет нарастающий ток. Этот ток будет непрерывно увеличиваться пока транзистор VT2 не перейдет в режим насыщения. Следствием это будет увеличение напряжения на коллекторе транзистора VT2, что неизменно приведет к возрастанию напряжения на резисторе R2. В результате, транзистор VT1 закроется, после чего закроется и второй транзистор VT2.
После того, как ток прекратит движение через катушку L1, на коллекторе транзистора VT2 образуется большое положительного напряжения, которое двигаясь через диод Шоттки VD1, будет заряжать конденсатор C1. Стабилитрон VD2 в схеме преобразователя напряжения играет роль ограничителя зарядного напряжения на конденсаторе C1 и поддерживает его на уровне 15 В.
После того, как магнитное поле катушки L1 исчезает, напряжение на транзистора VT2 падает до уровня источника питания, т. е. до 1,5 Вольт. После чего оба транзистора переходят в открытое состояние, а через катушку L1 снова потечет нарастающий ток.
Частота работы устройства около 10 кГц. При исправных деталях и правильном монтаже, простой преобразователь напряжения начинает работать сразу. Допускается замена деталей очень близких по характеристикам».

Читайте также:  Из чего сделать улей для пчел

Много разнообразных преобразователей напряжения реализуется на базе интегрального таймера NE555.


Рис.6

Схема одного из вариантов такого преобразователя приведена на Рис.6. Для получения высоковольтных импульсов он использует накопительный дроссель.
«На таймере DA1 собран генератор импульсов с частотой повторения около 40 кГц (она определяется сопротивлением резисторов R1, R2 и емкостью конденсатора С1). Эти импульсы поступают на транзистор VT1, работающий в режиме переключения. Когда он открыт, в катушке индуктивности L1 накапливается энергия за счет протекающего через VTI тока. Когда транзистор закрывается, на катушке L1 возникает импульс напряжения, амплитуда которого в несколько раз превышает напряжение питания (в авторской конструкции она была около 80 В). Эти импульсы напряжения выпрямляются диодом VD1, а выпрямленное напряжение фильтруется, а затем стабилизируется стабилитроном VD2.
Транзистор VT1 желательно подобрать из числа предназначенных для использования в переключающих схемах. Он, в частности, должен иметь высокое допустимое напряжение коллектор-эмиттер (не ниже 100 В). Высокое обратное допустимое напряжение должен иметь и диод VD1.
Стабилитрон VD2 — малой мощности на требуемое выходное напряжение (в авторской конструкции — на 30 В). Таймер DA1 имеет аналог отечественного производства — КР1006ВИ1. Подробной информации о катушке индуктивности в первоисточнике нет. Отмечается лишь, что она выполнена на незамкнутом броневом магнитопроводе из материала с высокой начальной магнитной проницаемостью медным проводом диаметром 0,1 мм.
При налаживании конструкции может возникнуть необходимость подобрать резистор R3 по наибольшему выпрямленному напряжению».


Рис.7

«Ещё одна схема очень простого преобразователя постоянного напряжения с минимумом элементов, обеспечивающего несколько миллиампер тока напряжением 400. 425В при потребляемом токе 80. 90 мА от источника 9 В, приведена на Рис.7.
На таймере NE555 выполнен мультивибратор на частоту 14 кГц. КПД устройства сильно зависит от добротности катушки индуктивностью 1 мГн.
Дроссель имеет индуктивность 1000мкГн. Толщина провода не столь важна, поскольку выходной ток схемы ничтожный. Такое устройство может быть пригодно для тех приборов, где нужно получить повышенное напряжение, но размеры ограничены».

Достаточно часто приходится видеть устройства преобразователей на NE555 со встроенной схемой стабилизации выходного напряжения. Однако, кто интересуется, тот знает, что импульсные преобразователи со стабилизацией гораздо лучше работают на недорогих микросхемах серии UC384x, которые представляют из себя широтно-импульсные контроллеры и специально спроектированы для работы в преобразователях постоянного напряжения. Схема такого устройства приведена на Рис.8.


Рис.8

L1 намотана на кольце из порошкового железа d=24мм и содержит 24 витка провода диаметром 1мм. Выходная частота работы микросхемы при указанных номиналах элементов работы — 75-80 кГц.

Устройство было изготовлено и довольно подробно протестировано в сравнении с аналогичным преобразователем на микросхеме NE555 уважаемым Александром Сорокиным на странице форума https://www.drive2.ru/c/470856784697885156/.
Вот что пишет автор:

«Стабилизация выходного напряжения на микросхеме UC3845 работает прекрасно во всем диапазоне нагрузок. Напряжение холостого хода в пределах нормы (19.2 вольта для ноутбука), при 10Вт на выходе напряжение 18,94в, при 85Вт 18,8в т.е. просадка всего 0,1в и это прекрасно».

Ну и конечно не следует обходить вниманием специализированные микросхемы, представляющие собой практически готовые повышающие DC-DC преобразователи. Примером такой ИМС является TL499A (Рис.9).


Рис.9

С помощью этого импульсного источника питания можно получить напряжение от 1,5 до 15V при выходном токе до 50мА, для питания портативной аппаратуры от источника напряжением ЗV (два элемента «АА» или один литиевый элемент).
В основе схемы DC/DC конвертор на микросхеме TL499A. У микросхемы есть два входа, в данном случае используется только один — вывод 3, для подачи входного напряжения с целью его повышения.
Кстати, это напряжение не обязательно должно быть ЗV, может быть и 5V, а может быть и 1,5V (при работе от одного гальванического элемента), потому что минимальное входное напряжение микросхемы 1,1V, а максимальное 10V. При этом выходное напряжение поддерживается стабильным.
Установка и стабилизация выходного напряжения происходит при помощи компаратора (вывод 2), наблюдающего за выходным напряжением, которое поступает на него через делитель на резисторах R2 и R3. Подстроечным резистором R2 выставляется уровень выходного напряжения в диапазоне от 1,5 до 15V.

Блог о электронике

Иногда надо получить высокое напряжение из низкого. Например, для высоковольтного программатора, питающегося от 5ти вольтового USB, надыбать где то 12 вольт.

Как быть? Для этого существуют схемы DC-DC преобразования. А также специализированные микросхемы, позволяющие решить эту задачу за десяток деталек.

Принцип работы
Итак, как сделать из, например, пяти вольт нечто большее чем пять? Способов можно придумать много — например заряжать конденсаторы параллельно, а потом переключать последовательно. И так много много раз в секунду. Но есть способ проще, с использованием свойств индуктивности сохранять силу тока.

Чтобы было предельно понятно покажу вначале пример для сантехников.

Заслонка открывается и мощный поток жидкости начинает сливаться в никуда. Смысл лишь в том, чтобы этим потоком как следует разогнать турбину. Накачать ее энергией, передав энергию источника в кинетическую энергию турбины.

Фаза 2

Заслонка резко закрывается. Потоку больше деваться некуда, а турбина, будучи разогнанной продолжает давить жидкость вперед, т.к. не может мгновенно встать. Причем давит то она ее с силой большей чем может развить источник. Гонит жижу через клапан в аккумулятор давления. Откуда же часть (уже с повышеным давлением) уходит в потребитель. Откуда, благодаря клапану, уже не возвращается.

Скорость турбины на излете, энергия перешла в давление в аккумуляторе. Сил продавить клапан, подпертный с той стороны набитым давлением уже не хватает. Вот вот и все встанет. Но в этот момент вновь открывается заслонка и турбина вновь разгоняется, набирает энергию из источника, превращая энергию потока в энергию вращающихся масса металла. Потребитель, тем временем, потихоньку жрет из аккумулятора.

Читайте также:  Как заправить газовую пружину для пневматики

И вновь заслонка закрывается, а турбина начинает яростно продавливать жидкость в аккумулятор. Восполняя потери которые там образовались на фазе 3.

Назад к схемам
Вылезаем из подвала, скидываем фуфайку сантехника, забрасываем газовый ключ в угол и с новыми знаниями начинаем городить схему.

Вместо турбины у нас вполне подойдет индуктивность в виде дросселя. В качестве заслонки обычный ключ (на практике — транзистор), в качестве клапана естественно диод, а роль аккумулятора давления возьмет на себя конденсатор. Кто как не он способен накапливать потенциал. Усе, преобразователь готов!

Ключ замкнут. Ток от источника начинает, фактически, работать на катушку. Накачивая ее энергией.

Ключ размыкается, но катушку уже не остановить. Запасенная в магнитном поле энергия рвется наружу, ток стремится поддерживаться на том же уровне, что и был в момент размыкания ключа. В результате, напряжение на выходе с катушки резко подскакивает (чтобы пробить путь току) и прорвавшись сквозь диод набивается в конденстор. Ну и часть энергии идет в нагрузку.

Ключ тем временем замыкается и катушка снова начинает нажирать энергию. В то же время нагрузка питается из конденсатора, а диод не дает току уйти из него обратно в источник.

Ключ размыкается и энергия из катушки вновь ломится через диод в конденсатор, повышая просевшее за время фазы 3 напряжение. Цикл замыкается.

Как видно из процесса, видно, что за счет большего тока с источника, мы набиваем напряжение на потребителе. Так что равенство мощностей тут должно соблюдаться железно. В идеальном случае, при КПД преобразователя в 100%:

Так что если наш потребитель требует 12 вольт и кушает при этом 1А, то с 5 вольтового источника в преобразователь нужно вкормить целых 2.4А При этом я не учел потерь источника, хотя обычно они не очень велики (КПД обычно около 80-90%).

Если источник слаб и отдать 2.4 ампера не в состоянии, то на 12ти вольтах пойдут дикие пульсации и понижение напряжения — потребитель будет сжирать содержимое конденсатора быстрей чем его туда будет забрасывать источник.

Схемотехника
Готовых решений DC-DC существует очень много. Как в виде микроблоков, так и специализированных микросхем. Я же не буду мудрить и для демонстрации опыта приведу пример схемы на MC34063A которую уже использовал в примере понижающего DC-DC преобразователя.

Работа
Питание через токовый шунт Rsc идет в дроссель L1 оттуда через ключ (SWC/SWE) на землю и через диод D1 на накопительный конденсатор C2. C него на нагрузку. Прям как в схеме приведенной выше. Остальные элементы для задания режима работы микросхемы.

  • SWC/SWE выводы транзисторного ключа микросхемы SWC — это его коллектор, а SWE — эмиттер. Максимальный ток который он может вытянуть — 1.5А входящего тока, но можно подключить и внешний транзистор на любой желаемый ток (подробней в даташите на микросхему).
  • DRC — коллектор составного транзистора
  • Ipk — вход токовой защиты. Туда снимается напряжение с шунта Rsc если ток будет превышен и напряжение на шунте (Upk = I*Rsc) станет выше чем 0.3 вольта, то преобразователь заглохнет. Т.е. для ограничения входящего тока в 1А надо поставить резистор на 0.3 Ом. У меня на 0.3 ома резистора не было, поэтому я туда поставил перемычку. Работать будет, но без защиты. Если что, то микросхему у меня убьет.
  • TC — вход конденсатора, задающего частоту работы.
  • CII — вход компаратора. Когда на этом входе напряжение ниже 1.25 вольт — ключ генерирует импульсы, преобразователь работает. Как только становится больше — выключается. Сюда, через делитель на R1 и R2 заводится напряжение обратной связи с выхода. Причем делитель подбирается таким образом, чтобы когда на выходе возникнет нужное нам напряжение, то на входе компаратора как раз окажется 1.25 вольт. Дальше все просто — напряжение на выходе ниже чем надо? Молотим. Дошло до нужного? Выключаемся.
  • Vcc — Питание схемы
  • GND — Земля

Все формулы по расчету номиналов приведены в даташите. Я же скопирую из него сюда наиболее важную для нас таблицу:

Конденсатор С1 призван оградить питающую цепь от бросков. Потому и взят побольше. Резистор R1 у меня взят на 1.5кОм, а R2 на 13кОм, что дает нам напряжение выхода в 12 вольт. В качестве диода надо выбирать диод Шоттки. Например 1N5819. У диодов Шоттки заметно ниже падение напряженияна pn переходе, а еще ниже паразитная емкость этого перехода, что позволяет ему работать с меньшими потерями на больших частотах. Микросхема может работать на входном напряжении от 3 вольт.

Опыт
Для примера по быстрому развел микромодульчик, забирающий 5 вольт и выдающий 12 вольт. Схема уже приведена выше, а печатка получилась такой:

Запитал от 5 вольт и нагрузил на 12ти вольтовую светодиодную линейку. КПД у моего преобразователя, кстати, получился так себе — не выше 50% т.к. слишком маленькая индуктивность дросселя и большая емкость конденсатора С3, но иного под рукой не оказалось.

  • Даташит на MC34063A

Вот так вот. Простая схемка, а позволяет решить ряд проблем.

Преобразователи напряжения используются везде и всюду. Будь то огромные многотонные трансформаторы на электроподстанциях, обычные 50-герцовые трансформаторы в домашней аппаратуре или сложные импульсные схемы с умными микроконтроллерами. Любой электроприбор имеет собственные требования к питанию, да и отдельные узлы в этом приборе тоже привередливы к значениям напряжений. Вопрос — почему? Из статьи вы узнаете, зачем вообще нужны преобразователи и как работает DC-DC регулятор напряжения на материнской плате компьютера.

Никакого единства…

В розетке 220 вольт, у блока питания 12 вольт, у зарядки телефона 5 вольт. Может сложиться впечатление, что инженерам нравится играть с напряжением, сначала повышая его до миллионов вольт на линиях электропередач, а потом до единиц вольт для питания центрального процессора. Почему люди не придумали какое-то единое значение напряжения и не используют его везде?

Определенно, центральный процессор — да и вообще любой другой микрочип — питать высоким напряжением прямо из розетки нельзя. Двенадцать вольт после блока питания тоже не подойдут. Во-первых, на микроскопическом уровне даже лишние пара десятых вольта могут привести к утечкам тока и повлиять на стабильность схемы. Во-вторых, чем выше напряжение, тем большее энергии расходуется на работу процессора. Поэтому с уменьшением техпроцесса разработчики стараются снизить и рабочий вольтаж. Когда-то процессоры, например, древний Intel 8086 выпуска 70-х годов, питались от 5 вольт, а современные работают всего от 1-1,4 вольта.

Блоки питания с напряжением 1 вольт на выходе — тоже не вариант, так как сила тока будет чрезмерно высокой — от нескольких десятков до сотен ампер. Ведь, снижая напряжение, растет сила тока при той же мощности. Вычислить силу тока можно, поделив мощность на напряжение.

Большая сила тока вставляет палки в колеса при подборе проводников из-за их сопротивления. Сопротивление — эффект, когда структура проводника мешает беспрепятственному протеканию тока по нему. Заряженные частицы врезаются на полной скорости в атомы проводника, чем и вызывают сопутствующий нагрев, а сами частицы теряют энергию. Это как бег с препятствиями. Вы тоже потеряете энергию, если во время бега по густому лесу будете влетать в деревья.

Читайте также:  Как очищать стиральную машину

Сопротивление любого провода не нулевое, причем оно увеличивается с ростом его длины. Толщина провода также влияет на сопротивление. Поэтому, чтобы передать большую мощность при низком значении напряжения и высокой силе тока, придется использовать довольно толстые провода.

К примеру, напряжение на ЛЭП специально увеличивают до сотен тысяч вольт после электростанции, чтобы передавать мегаватты электрической мощности на значительные расстояния с помощью относительно тонких проводов.

И последнее. У любой электроники свое значение рабочего напряжения, а у процессора оно еще и регулируется в зависимости от нагрузки и условий работы. Так что договориться и сделать единую энергосистему с одинаковым значением напряжения попросту нереально.

Нет, без преобразователей ну никак не обойтись.

Устройство DC-DC преобразователя

Для питания микроэлектроники от постоянного напряжения используются DC-DC преобразователи, основанные на принципах широтно-импульсной модуляции — ШИМ. Их еще называют регуляторами напряжения — VRM.

Как это работает? Возьмите обычный вентилятор. Что будет, если вы его включите? Правильно, он будет дуть с одинаковой силой.

Что произойдет, если с равной периодичностью дергать рубильник — включать вентилятор всего на полсекунды, а на следующие полсекунды выключать? Двигатель вентилятора не может мгновенно набрать максимальную скорость вращения, поэтому за такой небольшой промежуток времени он как следует не разгонится. Но и остановиться за то же время он не успеет, так как продолжит крутиться по инерции. Так что вентилятор продолжит дуть, но с гораздо меньшей мощностью. Попробуйте поэкспериментировать со своим домашним вентилятором.

Выходит, если включать и выключать питание вентилятора, то вместо постоянного напряжения мы получим прерывистые импульсы той же амплитуды.

Так и работает простейший ШИМ-регулятор. Но вместо человека с выключателем используется транзистор — он то открывается на некоторое время (ВКЛ), то закрывается (ВЫКЛ). Только делает это с частотой не два раза в секунду (2 Гц), а десятки тысяч раз (10 кГц). Вы так точно не сможете. Такой транзистор называется «ключевым».

Кто-то может возмутиться: «Но, погодите, нам нужно получить напряжение в 1 вольт, а тут хоть и прерывистые, но те же 12 вольт, что и на входе! Кажется, нас обманывают!»

Действительно, таким образом питать процессор по-прежнему нельзя. Так что к ключевому транзистору (VT1) понадобятся еще несколько элементов: катушка индуктивности (L), конденсатор (C) и синхронный транзистор (VT2). Катушка и конденсатор образуют LC-фильтр.

Технически можно разделить цикл преобразования на две стадии: накачка энергии в катушку с конденсатором и стадию разряда.

Первая стадия — накачиваем энергию

Когда транзистор VT1 открыт, его собрат — синхронный транзистор VT2 — закрыт. В катушке L накапливается энергия, плавно нарастает ток и заряжается конденсатор C.

Вторая стадия — стадия разряда

Транзистор VT1 закрывается, открывается синхронный VT2 — он нужен, чтобы соединить вход катушки с отрицательным выводом нагрузки, создавая замкнутую цепь питания. Пусть мы и разорвали на этот краткий миг связь с источником питания, но катушка никуда не делась. Накопленная в катушке энергия теперь играет роль источника питания и поддерживает силу и направление тока, а конденсатор разряжается и питает нагрузку.

Затем транзистор VT1 снова открывается, а VT2 закрывается, и цикл начинается заново. Причем для наибольшей эффективности циклы повторяются с довольно высокой частотой — у современных компьютерных комплектующих миллионы раз в секунду (измеряется в мегагерцах, МГц).

Благодаря этому процессу мы получаем постоянное напряжение на нагрузке ниже, чем входное до ключевого транзистора. Импульсы как бы сглаживаются, образую близкую к прямой линию напряжения.

То, что линия напряжения не совсем прямая — это нормально. В реальных условиях идеальных LC-фильтров не бывает, и всегда присутствуют небольшие пульсации напряжения. И главное, подобрать параметры катушки и конденсатора таким образом, чтобы они не успевали разрядиться полностью к концу цикла. Тогда ток становится неразрывным.

К слову, ток на всей цепи примерно равен. А так как синхронный транзистор VT2 открыт несоизмеримо дольше — работать ему приходиться, что называется, за троих.

Как настраивается преобразователь

Уровень напряжения на нагрузке будет зависеть от длительности первой и второй стадий в рамках одного цикла. Ведь чем дольше открыт транзистор VT1, тем больше энергии успевает накопить катушка и тем выше будет по итогу напряжение после LC-фильтра.

Если мы поделим время первой стадии на длительность полного цикла, то получим коэффициент заполнения (D) от 0 до 100 %. Чтобы узнать выходное напряжение (U out), нужно коэффициент заполнения умножить на входное напряжение (U in).

А чтобы узнать коэффициент заполнения, делим U out на U in. Простой пример: чтобы получить типичное для центрального процессора напряжение в 1,2 вольта, то, поделив на входные 12 вольт (напряжение на выходе блока питания), получим D=0,1. Это значит, что первая стадия (накачки энергии) займет всего 10 % времени от общей длительности цикла, а оставшиеся 90 % времени уйдут на стадию разряда.

Когда одной фазы недостаточно

В мощных преобразователях часто используется не один канал с парой транзисторов, одной катушкой и одним конденсатором, а несколько параллельно подключенных каналов.

Как мы уже выяснили, любой проводник имеет ненулевое сопротивление и нагревается. Транзистор в ключевом режиме — тоже проводник, как обычный выключатель. И сопротивление (Rds) между его входом и выходом (сток-исток) не равно нулю. Значит, чем выше ток, тем сложнее будет электронам пробиться через него, что приведет к потерям энергии и нагреву. Чтобы минимизировать этот эффект и применяются несколько фаз — нагрузка распределяется между ними поровну.

Еще один интересный способ повысить эффективность: синхронный транзистор VT2 открыт примерно в семь-восемь раз дольше чем VT1, поэтому VT2 часто дублируют и стараются подобрать более продвинутую и дорогую модель с низким Rds.

Но это еще не все. Такие каналы не просто так называют «фазами». Процесс переключения транзисторов в разных каналах происходит не одновременно, а с небольшим сдвигом по фазе.

На выходе после LC-фильтров все фазы объединяются в одну, и амплитуда пульсаций становится значительно ниже, чем было бы у каждой фазы в отдельности.

Так что даже несколько десятков каналов в преобразователе на материнской плате неправильно называть «избытком». Ведь это не только меньшие потери, но и лучшее качество напряжения. Меньше пульсаций напряжения — меньше выбросов во внутренние узлы процессора — выше стабильность всей схемы, особенно при разгоне.

Те же принципы справедливы и для графического чипа видеокарты, процессора смартфона и любой другой «тонкой» электроники. Но в этом случае разработчики уже за нас рассчитали потребляемую мощность и количество необходимых узлов. А вот при выборе материнской платы пользователь должен сам определить, что ему нужно, учесть потребляемую мощность процессора. Тем более, если в планах серьезный разгон.

Комментировать
0 просмотров
Комментариев нет, будьте первым кто его оставит

Это интересно
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
No Image Строительство
0 комментариев
Adblock detector