Инфразвук и его применение

Инфразвук представляет собой звуковые волны низкой частоты, которые люди не слышат. Так как слуховой аппарат людей может воспринимать звуки в пределах частот от 16 до 20 тысяч, то за верхний уровень частот инфразвука принято считать 16 Гц. Наименьший уровень этого диапазона расположен на уровне 0,001 Гц. Однако на практике интерес представляют колебания, имеющие десятую или сотую доли герца.

Содержание
  1. Что это
  2. Инфразвуковые волны гораздо лучше проникают в помещения, чем звуковые. К тому же они оказывают неблагоприятное влияние на человека. При длительном воздействии у людей появляется раздражение, головная боль и усталость. Действие волн на человека объясняется резонансной природой. В случае приближения частот колебаний тела к частотам внешней инфразвуковой волны наблюдается эффект резонанса.
  3. При помощи этого прибора и создаваемых им инфразвуковых волн к роговице были доставлены лекарственные вещества, которые ускорили выздоровление и привели к рассасыванию помутнений в роговице.
  4. Сегодня американскими, российскими и иными зарубежными специалистами разрабатывается инфразвуковое оружие. Каждая страна желает преуспеть в этом деле, ведь это позволит получить недорогое, но эффективное средство, которое будет способно скрытно оказывать действие на множество людей. В зависимости от используемой частоты на поле боя инфразвук будет приводить противника к паническому состоянию, вызывать сумасшествие, страх, плохое самочувствие и смерть. Обладателю такого оружие будет достаточно направить его в сторону солдат, чтобы те разбежались.
  5. Содержание
  6. Характеристики инфразвука [ править | править код ]
  7. Источники инфразвука [ править | править код ]
  8. Распространение инфразвука [ править | править код ]
  9. Физиологическое действие инфразвука [ править | править код ]
  10. Обнаружение и регистрация инфразвука [ править | править код ]
  11. Мифы об инфразвуке [ править | править код ]

Что это

Инфразвуковые волны представляют низкочастотные механические колебания менее 16 Гц. Его источниками могут являться естественные объекты в виде грозовых разрядов или землетрясений, а также искусственные объекты в виде станков, автомобилей, взрывов или специальных устройств. Волны также могут сопровождать шумы при работе транспорта и промышленных установок. Типичным примером таких низкочастотных колебаний является вибрация.

Так как инфразвуковые колебания слабо поглощаются разными средами, они могут перемещаться на весьма значительные расстояния по поверхности земли, воды и воздуха. Благодаря такому свойству удается определить расположение эпицентра землетрясения, мощного взрыва либо стреляющей пушки. Так колебания в океане идут на большие расстояния, то фиксирующее оборудование может за определенный период времени получить данные о возникновении стихийного бедствия, к примеру, цунами.

Природа появления инфразвуковых колебаний аналогична слышимому звуку, вследствие чего им свойственны те же физические принципы, что и обычному звуку. Инфразвук имеет достаточно большую длину волны, вследствие чего у них наблюдается ярко выраженная дифракция. Вообще дальнобойность является важным свойством сверхнизкого звука. Благодаря способности отражения и дальнобойности инфразвуковые волны находят широкое применение в самых разных областях науки и техники.

Принцип действия

Инфразвук может создавать любое тело, которое имеет определенное колебательное движение. Так как частота собственных колебаний снижается с увеличением размеров объекта, то в большинстве случаев инфразвуковые волны появляются при колебаниях или быстрых перемещениях. Например, в домашних условиях их можно получить ударом по натянутому полотну ткани или резком закрытии двери и так далее. Источниками таких колебаний могут послужить и природные явления: гроза, землетрясения и тому подобное.

Генераторами незатухающих волн являются устройства, которые напоминают свистки. Если труба имеет закрытый конец, то длина волны соответствует 1/4 стоячей волны. Так как длина волны является большой, то следует брать большую трубу. При помощи свистков можно получить весьма значительные мощности. К примеру, инфразвуковой «свисток», который создал французский ученый Гавро, имел наибольшую мощность в 2 кВт и диаметр в 1,5 м. При его использовании появлялись волны, которые приводили к появлению трещин на стенах. Если бы его включили на всю мощность, то волны могли бы разрушить целое здание.

Инфразвуковые волны гораздо лучше проникают в помещения, чем звуковые. К тому же они оказывают неблагоприятное влияние на человека. При длительном воздействии у людей появляется раздражение, головная боль и усталость. Действие волн на человека объясняется резонансной природой. В случае приближения частот колебаний тела к частотам внешней инфразвуковой волны наблюдается эффект резонанса.

Если человек лежит, то его частота тела человека равняется 4 Гц, в стоячем положении она составляет от 5 до 12 Гц. При этом каждый орган человека имеет свою частоту колебаний. Для брюшной полости частота составляет 3-4 Гц, для грудной клетки – в пределах 6-8 Гц и так далее. При совпадении волн с этими частотами происходит резонанс, который вызывает неприятные ощущения, а в некоторых случаях приводит к весьма тяжелым последствиям. Именно поэтому в промышленности, транспорте и жилых домах принимаются меры, чтобы снизить воздействие инфразвуковых колебаний.

При возникновении резонанса человеку кажется, что его внутренние органы начинают вибрировать. Инфразвук определенной частоты способен вызвать даже расстройства мозга, привести к слепоте и даже вызвать смерть. По такому же принципу инфразвуковые волны воздействуют и на другие объекты. К примеру, в истории известен случай, когда по каменному мосту маршем, чеканя шаг, передвигался отряд солдат. В результате возникли колебания, которые совпали с внутренней частотой моста. Возник резонанс, который привел к разрушению моста.

Применение

Инфразвук является не только нежелательным и опасным явлением, его часто используют и в полезных целях. Так инфразвуковые колебания применяют для исследования океанов, атмосферы, в том числе нахождения мест, где происходят взрывы или извержения вулканов. При помощи них предсказывают цунами и контролируют проведение подземных ядерных взрывов. Для регистрации инфразвуковых волн используют геофоны, гидрофоны или микрофоны.

На сегодняшний день инфразвуковые волны начинают медленно, но успешно использовать в медицинских целях. Главным образом их применяют для удаления опухолей во время лечения рака, лечения болезней роговицы, а также в ряде иных областей. В нашей стране инфразвуковыми колебаниями впервые лечили роговицу в детской клинической больнице. С этой целью был создан и использован инфразвуковой фонофорез.

При помощи этого прибора и создаваемых им инфразвуковых волн к роговице были доставлены лекарственные вещества, которые ускорили выздоровление и привели к рассасыванию помутнений в роговице.

На данный момент разрабатываются различные физиотерапевтические технологии, в которых используются инфразвуковые волны. Однако такое лечение используют только отдельные специалисты и узконаправленно. В лечении рака применяются только отдельные экземпляры приборов, которые работают на инфразвуковых колебаниях. У них большая перспектива, однако, развитие подобных методов останавливает вредное воздействие, которое оказывают инфразвуковые волны на живой организм. Тем не менее, в будущем эти проблемы должны быть решены.

Военное применение

Сегодня американскими, российскими и иными зарубежными специалистами разрабатывается инфразвуковое оружие. Каждая страна желает преуспеть в этом деле, ведь это позволит получить недорогое, но эффективное средство, которое будет способно скрытно оказывать действие на множество людей. В зависимости от используемой частоты на поле боя инфразвук будет приводить противника к паническому состоянию, вызывать сумасшествие, страх, плохое самочувствие и смерть. Обладателю такого оружие будет достаточно направить его в сторону солдат, чтобы те разбежались.

Инфразвуковое оружие уже находит применение против толпы. Подобное оружие было применено в Грузии против протестующих. Люди под воздействием волн ощущали невероятный страх, они хотели спрятаться. Им казалось, что они сходят с ума и даже погибают. Некоторые люди теряли контроль и на некоторое время полностью забывали, кто они и что вокруг происходит. Затем люди приходили в себя, но не понимали, как они оказывались в том или ином месте. После этих событий многие люди имели стойкий страх перед участием в митингах или любых других массовых мероприятиях.

Хотя инфразвуковое оружие и показало свою состоятельность, однако последствия, которые оно может оказать на людей, до сих пор толком не изучено. Проблемой является и то, что инфразвук в городских условиях преломляется и отражается, воздействуя в обратном направлении. Явление резонанса также можно использовать и при осаде строения, где располагаются террористы. Но здесь также достаточно много «белых» пятен.

Подоплека военного применения инфразвука

Тем не менее, у изобретателей есть исторический пример вполне успешного применения инфразвукового оружия. Так в Библии описывается случай, когда евреи разрушили стены Иерихона с помощью звука, которые издавали священные трубы. На этом примере и “немцы” пытались создать свое инфразвуковое оружие для уничтожения самолетов противника. Но это не привело к успеху.

“Немцы” пытались устраивать диверсии против англичан. Они посылали в Великобританию специальные грампластинки, на которых были записаны мелодии. При включении записи пластинки должны были излучать инфразвук. Однако и здесь немецких военных ждала неудача.

Тем не менее, немецкие ученые не останавливали свои изобретательские работы. Ричард Валлаушек продолжил создание устройства, которое могло бы привести к смерти противника. В 1944 году он продемонстрировал установку Schallkanone, которая напоминала параболический отражатель, внутри которого располагался инжектор с зажиганием. В него подавалось горючее вещество и кислород.

При поджигании смеси устройство через определенные промежутки времени выдавало волны требуемой частоты. В результате, люди, которые находились на расстоянии 60 метров от устройства. Падали замертво и погибали. Установка показала эффективность, однако уже был конец войны, ее не удалось полноценно испытать и запустить в серию. Саму же установку после разгрома “немцев” вывезли в Америку, как и многие другие образцы акустического оружия.

Сегодня идеи “немцев” получили свое развитие. Не так давно американская армия продемонстрировала устройство, которое генерирует «акустические пули». Специалисты из России также показали свою установку, которая создает инфразвуковые «акустические пули», которые поражают противника за сотни метров.

Инфразву́к (от лат. infra — ниже, под) — звуковые волны, имеющие частоту ниже воспринимаемой человеческим ухом. Поскольку обычно человеческое ухо способно слышать звуки в диапазоне частот 16—20’000 Гц, за верхнюю границу частотного диапазона инфразвука обычно принимают 16 Гц [1] . Нижняя же граница инфразвукового диапазона условно определена как 0,001 Гц. Практический интерес могут представлять колебания от десятых и даже сотых долей герц, то есть с периодами в десятки секунд.

Содержание

Характеристики инфразвука [ править | править код ]

Инфразвук подчиняется общим закономерностям, характерным для звуковых волн, однако обладает целым рядом особенностей, связанных с низкой частотой колебаний упругой среды [2] :

  • инфразвук имеет гораздо большие амплитуды колебаний в сравнении с равномощным слышимым человеком звуком;
  • инфразвук гораздо дальше распространяется в воздухе, поскольку поглощение инфразвука атмосферой незначительно;
  • благодаря большой длине волны для инфразвука характерно явление дифракции, вследствие чего он легко проникает в помещения и огибает преграды, задерживающие слышимые звуки;
  • инфразвук вызывает вибрацию крупных объектов, так как входит в резонанс с ними.

Перечисленные особенности инфразвука затрудняют борьбу с ним, поскольку обычные способы противошумовой борьбы (звукопоглощение, звукоизоляция, удаление от источника звука) против инфразвука малоэффективны.

Инфразвук, образующийся в море, называют одной из возможных причин появления «летучих голландцев» — судов, покинутых экипажем в открытом море в ситуации, когда физической опасности судну нет [3] (см. Бермудский треугольник, Корабль-призрак).

Источники инфразвука [ править | править код ]

Инфразвук генерируется земной корой при землетрясениях, ударах молний, при сильном ветре (инфразвуковой аэродинамический шум) во время бурь и ураганов (в последнем случае регистрация инфразвука, в том числе нарастание инфразвукового фона, — верный признак приближения шторма. В частности прибрежные сухопутные и морские животные уходят в глубь суши и воды соответственно, заслышав нарастающий инфразвуковой шум и следовательно ожидая приближение шторма) [9] .

При помощи инфразвука общаются между собой киты и слоны. Инфразвук был зарегистрирован и при взрыве Челябинского метеорита в 2013 г. инфразвуковыми станциями систем обнаружения ядерных взрывов по всей Земле [10] .

Техногенный инфразвук генерируется разнообразным оборудованием при колебаниях поверхностей больших размеров, мощными турбулентными потоками жидкостей и газов, при ударном возбуждении конструкций, вращательном и возвратно-поступательном движении больших масс. Основными техногенными источниками инфразвука являются тяжёлые станки, ветрогенераторы, вентиляторы, электродуговые печи, поршневые компрессоры, турбины, виброплощадки, сабвуферы, водосливные плотины, реактивные двигатели, судовые двигатели. Кроме того, инфразвук возникает при наземных, подводных и подземных взрывах.

Распространение инфразвука [ править | править код ]

Для инфразвука характерно малое поглощение в различных средах, вследствие чего инфразвуковые волны в воздухе, воде и в земной коре могут распространяться на очень большие расстояния, и инфразвук может служить предвестником бурь, ураганов, цунами. Это явление находит практическое применение при определении места сильных взрывов или положения стреляющего орудия. (Последнее может быть использовано в контрбатарейной борьбе.) Звуки взрывов, содержащие большое количество инфразвуковых частот, применяются для исследования верхних слоёв атмосферы, свойств водной среды, геодезического зондирования земной коры с дневной поверхности.

Физиологическое действие инфразвука [ править | править код ]

Физиологическое действие инфразвука на живые существа (в том числе человека) зависит только от его спектральных, временных и мощностных характеристик и не зависит от того, на открытом пространстве или в помещении находится живой объект воздействия.
Патогенное действие инфразвука заключается в повреждении нервной системы (в частности головного мозга), органов эндокринной системы и внутренних органов вследствие развития тканевой гипоксии из-за ликвор-гемодинамических и микроциркуляторных нарушений.
При 180—190 дБ действие инфразвука смертельно вследствие разрыва лёгочных альвеол. Другие зоны интенсивных кратковременных воздействий вызывают синдром резко выраженного инфразвукового дискомфорта, предел переносимости которого наблюдается при 154 дБ. Исследования показали, что низкочастотные акустические колебания, в том числе и инфразвуковые, продолжительностью от 25 с до 2 мин с удельным звуковым давлением от 145 до 150 дБ в диапазоне частот от 1 до 100 Гц, вызывали у испытуемых ощущение вибрации грудной стенки, сухость в полости рта, нарушение зрения, головные боли, головокружение, тошноту, кашель, удушье [11] , беспокойство в области подреберий, звон в ушах, модуляцию звуков речи, боли при глотании и некоторые другие признаки нарушений в деятельности организма [12] .

Обнаружение и регистрация инфразвука [ править | править код ]

Обнаружение и регистрация инфразвука представляют определённые трудности в силу того, что из-за низкой частоты колебаний волны имеют многометровую длину и, представляя собой упругие механические колебания среды распространения, легко смешиваются с механическими колебаниями не инфразвуковой природы. Таким образом датчики инфразвука требуют защиты от наводимых ветром помех и других возмущений от близкорасположенных объектов. При этом сам инфразвук может быть зафиксирован за многие километры от его источника.

Для обнаружения инфразвука могут быть использованы устройства, основанные на принципе резонансного вибратора (струны, рупоры, трубы). Недостатком таких устройств является узкий диапазон обнаруживаемых ими частот, совпадающих с их собственной резонансной частотой, и огромные многометровые размеры, которые должны равняться или быть кратными длинам обнаруживаемых волн. Преимуществом является высокая чувствительность и КПД.

На практике для обнаружения инфразвуковых волн используют в основном компактные датчики, преобразующие акустические колебания в электрические сигналы с их дальнейшим усилением и обработкой средствами электроники [13] [8] [14] :

  • низкочастотные конденсаторные микрофоны свободного поля (для высокочастотного инфразвука от 0,5 Гц и выше, к примеру 40AZ — ½”, BSWA MP-201 и др.). Так как ЭДС микрофонов связана не с амплитудой движения их чувствительной мембраны, а с ускорением её движения, то при низкочастотном инфразвуке (одно колебание за несколько секунд) ЭДС в капсюлях микрофонов практически отсутствует, из-за чего низкочастотный инфразвук невозможно регистрировать микрофонами физически;
  • микробарометры (для низкочастотного инфразвука). Так как инфразвук является упругими колебаниями среды распространения, представляющими собой чередующиеся зоны сжатия-разрежения, то периодическое изменение давления (с периодичностью 1 колебание в секунды и минуты) по фронту его распространения возможно зафиксировать микробарометрами. Высокочастотный же инфразвук микробарометрами невозможно фиксировать из-за их реактивности (не успевают реагировать на столь быстрые незначительные изменения давления).

Компактные датчики инфразвука применяются в инфразвуковых станциях обнаружения и мониторинга за ядерными взрывами, в системах раннего оповещения о природных катаклизмах (бури, цунами), в шумомерах-анализаторах.

Мифы об инфразвуке [ править | править код ]

В ряде кино- и телефильмов активно эксплуатируется тема инфразвукового оружия, которое физически вполне возможно, однако при его описании сценаристы попадают впросак, поскольку слабо или вообще не знакомы с физикой излучения и приёма волн, в т. ч. акустических. Например, в эпизоде «Крысобой» телесериала «След» фигурирует носимый преступником автономный компактный направленный (т. е. безопасный для оператора) излучатель инфразвуковых волн, встроенный в корпус компьютера-планшета, из-за которого гибнут несколько человек.

Однако такое устройство нереализуемо вследствие физических причин: [ источник не указан 884 дня ] для частоты 7 Гц длина инфразвуковой волны составляет около 47 м. Величину не менее порядка этого значения должен иметь линейный размер акустического излучателя для хорошей её генерации [15] . Причём если предположить, что каким-либо образом излучатель инфразвука размером с носимый в руках планшет (линейным размером 25-30 см, много меньшим длины волны в 47 м) способен генерировать волну с интенсивностью, достаточной для летального воздействия на организм человека (например за счёт направляемой в него большой мощности), то исходя из фундаментальных свойств излучения волн его действие будет всенаправленным [16] , и первой жертвой станет сам оператор такого устройства [ источник не указан 884 дня ] . Кроме того, на настоящем этапе развития техники обеспечение генерирования инфразвуковых волн с достаточной для летального действия энергией является серьёзной технической проблемой [ источник не указан 884 дня ] . В качестве реализуемого на сегодняшний день источника такого акустического излучения [ источник не указан 884 дня ] предполагается использование мощных авиационных реактивных двигателей с резонаторами [17] , что снова исключает возможность переноса и использования такого устройства одним человеком [ источник не указан 884 дня ] .

МБОУ Гимназия №46

Тема:

«Влияние инфразвука и ультразвука на слух человека»

Выполнила: ученица 11 Г класса

Степанова Мария

Учитель: Желобанова В.М

Чебоксары 2015

Содержание

2.Виды и интенсивности звука…………………………………………..…..3

3.1. Применение инфразвука……………………………………………………….…..….5

4.1. Применение ультразвука……………………………………………………………..6

5.Влияние инфразвука и ультразвука на слух человека………………. 7

5.2 .Влияние ультразвука……………………………………………………………….….9

6. Защита от инфразвука и ультразвука………………………………………. 9

Введение

Слух имеет огромное значение для обучения речи, развития интеллекта и психики, особенно в детском возрасте. Слух играет ключевую роль в общении между людьми. Орган слуха образован тремя отделами: наружным — ушная раковина и наружный слуховой проход, средним — три последовательно соединенные слуховые косточки: молоточек, наковальня и стремечко, и внутренним ухом — костный и лежащий в нем перепончатый лабиринт (улитка). Среднее ухо сообщается с носоглоткой через слуховую (евстахиеву) трубу.

Сильный продолжительный и особенно постоянный шум — скрытый и опасный враг человека и других живых существ. Значительный и продолжительный шум ограничивает продолжительность труда, приводит к преждевременному расстройству и разрушению слухового аппарата, к притуплению слуха или полной его потере со временем
развитию сердечно-сосудистых заболеваний (гипертонии, аритмии), поражению нервной системы, язвенной болезни и другим расстройствам. Наиболее распространённые симптомы шумового влияния — раздражительность, рассеянность и, как следствие, невроз. Шум обостряет хронические заболевания. Любопытно, что во время сна шум оказывает более негативное воздействие, чем в часы бодрствования.

Виды и интенсивность звука

Минимальная интенсивность звука, воспринимаемая ухом, называется порогом слышимости. Порог слышимости различен для звуковых колебаний разных частот. Органы слуха человека наиболее чувствительны к частоте 1000–3000 Гц. Верхнюю границу интенсивности звука, которую человек ещё способен воспринимать, называют порогом болевого ощущения. Шум 0 дБ создаёт зимний лес в безветренную погоду. Шум 1 дБ еле уловим при исключительно остром слухе. Шум от нормального дыхания оценивается как 10 дБ, и такой уровень принимают за порог слышимости людей с нормальным слухом. Шёпот создаёт шум 20 дБ. Отдых и сон считают полноценным, когда шум не превышает 25–30 дБ, в учреждениях и на предприятиях шум достигает 40–60 дБ. На шумных предприятиях шум достигает 70 дБ. Кратковременно допустим шум 80 дБ. Более сильный шум вреден, болевой порог лежит обычно в пределах 120–130 дБ, за которым возможно повреждение слухового аппарата. Согласно санитарным нормам, уровень шума около зданий днём не должен превышать 55 дБ, а ночью (с 23 до 7 ч) 45 дБ, в квартирах соответственно 40 и 30 дБ. В диапазоне слышимых человеком звуков (от 16 до 20 000 Гц) самое неблагоприятное воздействие на человека оказывает шум, в спектре которого преобладают высокие частоты (выше 800 Гц). Ультразвук (выше 20 кГц) и инфразвук (ниже 16–25 Гц) не воспринимаются человеческим ухом, но они также могут оказывать негативное влияние. По данным австрийских исследователей, шум в больших городах сокращает продолжительность жизни их жителей на 10–12 лет. Поставлены опыты, которые доказывают, что повышенный шум неблагоприятно влияет и на развитие растений. Уровни шумов от различных источников и реакция организма на акустические воздействия приведены в таблице.

Для человека практически безвреден шум 20–30 дБ, допустимая граница – 80 дБ, 130 дБ вызывают болевые ощущения, 150 дБ уже непереносимы.

Транспортные средства создают шум, дБ

Легковой автомобиль. 65–80

Грузовой автомобиль. 80–90

Моторная лодка. 90–95

Поезд метро. 90–95

Обычный поезд. 95–100

Самолёт на взлёте. 110–130

Крупный реактивный самолёт. 155–160

В настоящее время в ряде стран установлены предельно допустимые уровни шума для предприятий, отдельных машин, транспортных средств. Например, к эксплуатации на международных линиях допускаются самолёты, создающие шум не выше 112 дБ днём и 102 дБ ночью. Начиная с моделей 1985 г. максимально допустимые уровни шума: для легковых автомобилей 80 дБ, для автобусов и грузовых автомобилей в зависимости от массы и вместимости соответственно 81–85 дБ и 81–88 дБ.

Инфразвук

Инфразвук (от латинского infra — ниже, под) — упругие волны, аналогичные звуковым, но с частотами ниже области слышимых человеком частот. Обычно за верхнюю границу инфразвуковой области принимают частоты 16—25Гц. Нижняя граница инфразвукового диапазона неопределенна. Практический интерес могут представлять колебания от десятых и даже сотых долей Гц., т. е. с периодами в десяток секунд. Обычно слух человека воспринимает колебания в пределах 16-20000 Гц (колебаний в секунду). Для инфразвука характерно малое поглощение в различных средах, вследствие чего инфразвуковые волны в воздухе, воде и в земной коре могут распространяться на очень далёкие расстояния.

3.1 Применение инфразвука

Инфразвук в метрологии. При обтекании волнистой поверхности моря потоками воздуха возникают инфразвуковые волны с частотой около 6 Гц. Они распространяются в воде со скоростью 1500 м/с. При помощи специальных измерительных устройств шторм может быть обнаружен задолго до того, как он достигнет побережья. С помощью инфразвука было определено существование масс теплого воздуха в стратосфере. Для этого пучок инфразвуковых волн, излучаемых генератором, был направлен в верхние слои атмосферы. Теплый воздух имеет плотность, отличную от холодного. Инфразвуковые волны, отраженные от теплых слоев воздуха, были зафиксированы приемником. Зная время прохождения прямой и отраженной волны, определили высоту границы раздела воздушных сред с разной плотностью. Она оказалась расположенной на высоте 30-50 км.

Инфразвук в диагностике механизмов. При работе механизмов зазоры между сопряженными деталями со временем изменяются. Если величина их превысит допустимое значение, то возникают дополнительные вибрации с инфразвуковой частотой, которые свидетельствуют о неисправности данного соединения или о выходе eгo из строя. Используя специальные инфразвуковые приборы, можно заранее определить степень износа деталей машин и тем самым предупредить их разрушение до появления слышимых стуков. Исследуя вибрации, протекающие с инфразвуковой частотой во время испытания новых машин и сооружении, можно заранее принять меры для их устранения в серийном или массовом производстве.

Инфразвук в навигации. При движении судов в море от шума двигателя и гребного винта в воде также возникают инфразвуковые волны, которые распространяются во все стороны с большой скоростью. Используя излучаемые инфразвуки, можно предупредить столкновение судов в море во время сильного тумана, ночью и в ненастье.

Инфразвук в медицине. Услышать инфразвук нельзя, но вот увидеть можно. Советскими учеными разработана специальная аппаратура, позволяющая записывать инфразвуки на ленту магнитофона и наблюдать их на экране осциллографа.

С помощью такой аппаратуры врачи увидели голос сердца. Врач, когда выслушивает сердце больного, слышит только сопровождающие шумы, а не основную пульсовую волну, протекающую с инфразвуковой частотой, равной примерно 1,2 Гц. Пульс больного, записанный на магнитофон, превращается на экране осциллографа в причудливую кривую. По форме этой кривой можно судить о состоянии здоровья, можно поставить точный диагноз сердечного заболевания. Сравнение записанных на магнитную ленту кривых пульсовой волны до и после лечения позволит судить об эффективности лекарственных средств. Инфразвуковая аппаратура может записать на пленку и работу легких, протекающую с основной частотой в 0,25-0,30 Гц. Во время сложных хирургических операций эта аппаратура позволяет вести одновременное наблюдение за работой сердца, пульсом, дыханием и давлением крови у больного, чего обычными способами добиться очень трудно.

Инфразвук в геологии. Мощными источниками инфразвуковых колебаний являются извержения вулканов и землетрясения. В результате расшифровки записей сейсмограмм можно судить о строении земной коры на больших глубинах, а также определять эпицентры землетрясений. Искусственно создаваемый инфразвук успешно применяется при сейсмической разведке полезных ископаемых. Для этой цели на поверхности земли производится взрыв, который является источником инфразвуковых волн. Эти волны, распространяясь в глубь земной коры, отражаются от границы сред с различной плотностью (например, от угольного пласта) и возвращаются на поверхность, где они воспринимаются и регистрируются приемным устройством. Этот способ широко применяется в геологии. Области применения инфразвуковых волн далеко не исчерпываются приведенными примерами. Инфразвук можно использовать даже для регистрации различных процессов, происходящих при полете ракет, управляемых по радио, или искусственных спутников Земли и т.д.

Ультразвук

Ультразвук — это звуковые волны высокой частоты, которые могут распространяться в жидких, твердых и газообразных средах за счет действия упругих сил. Частота ультразвука 15 кГц – 1 ГГц (от 15 000 Гц до 1 000 000 000 Гц). В природе его используют летучие мыши, птицы, бабочки, дельфины и другие животные для ориентации в пространстве и в общении с сородичами. Человечество достаточно давно изучает ультразвуковые колебания и применяет их в современной технике, медицине, промышленности и быту.

Применение ультразвука.

Ультразвук за последние годы нашел широкое применение в народном хозяйстве, биологии и медицине. В США, например, в настоящее время насчитываются миллионы ультразвуковых установок.

В промышленности применяются ультразвуки, частота которых в миллиарды раз превышает интенсивность окружающих нас слышимых звуков. Ультразвуки могут быть фокусированы и создают при этом очень высокое местное давление. Ультразвуком можно дробить вещество и ускорять химические реакции. Ультразвук способен вводить в коллоиды воду. При помощи ультразвука значительно ускоряются процессы дубления кожи, крашения, отбелки и мытья тканей, получения синтетического волокна, заменителей кожи и пластмасс. Ультразвук применяется для дефектоскопии, позволяющей определять внутренние дефекты в деталях, для очистки котлов от накипи, подводных поверхностей кораблей, для лужения алюминием, серебрения и т. д. Ультразвук нашел применение в доменном производстве, на водном транспорте, в рыболовном деле и геологии.

Ультразвук используется в медицине для диагностических целей (выявление инородных тел), в акушерстве, в стоматологии (бормашины), для изготовления эмульсий лекарственных веществ и т. д.

В настоящее время ультразвук малой интенсивности широко используется для терапевтических целей. Ультразвук оказывает сложное и выраженное биологическое действие, сущность которого еще недостаточно выяснена. Это действие, по-видимому, в основном зависит от создаваемых в тканях огромных местных давлений и от местного теплового эффекта, связанного с поглощением энергии при глушении вибрации. Жидкие среды и газы поглощают ультразвук, а твердые тела хорошо его проводят. Кости также являются хорошими проводниками ультразвука.

Оцените статью
gidpotolok.ru
Добавить комментарий