Источник тока на биполярном транзисторе

Схемы генераторов тока, разновидности токовых зеркал, Онлайн калькулятор
расчёта элементов источников тока.

На сегодняшнем мероприятии, посвящённом открытию "Культурно-досугового центра Лоховского муниципального образования", поговорим о разновидностях источников постоянного и, желательно, стабильного выходного тока.
— Если напряжение можно понять умом, то ток только чувством! — начал свой доклад руководитель кружка по художественному рукоделию Семён Самсонович Елдыкин.
— Целью нашего сегодняшнего радиолюбительского заседания является освоение упорядоченного движения свободных электрически заряженных частиц — как суммы знаний, физических умений и врождённых навыков.
"Как заземлить незаземлённое заземление? Сколько нужно выпить водки в граммах для снижения сопротивление тела на 1 кОм? И как не вступить с электричеством в интимные отношения?" — станет темой нашего научного коллоквиума.

Спасибо Семёну Самсоновичу за вводные слова, а нам пора переместиться поближе к обозначенной в заголовке теме. Напустим энциклопедического глубокомыслия:

«Источник тока — элемент, двухполюсник, сила тока через который не зависит от напряжения на его зажимах (полюсах). Используются также термины генератор тока и идеальный источник тока. » — учит нас Википедия.

Дополним редакцию. Источник тока должен иметь большое внутреннее дифференциальное сопротивление, такое чтобы при изменении сопротивления нагрузки сила тока в нагрузке практически не изменялась. Такую возможность нам предоставляет биполярный транзистор со стороны коллектора, полевик со стороны стока, либо операционник между инвертирующим входом и выходом.

Есть несколько основных характеристик, которые характеризуют источник тока.
Первой и основной из них является величина выходного тока.
Во-вторых, его выходное сопротивление, которое определяет, насколько ток источника меняется в зависимости от сопротивления нагрузки.
Третья спецификация — это минимальное и максимальное напряжения на выходе источника, при котором узел работает должным образом, т.е. выходной транзистор находится в активном режиме.
В-четвёртых, температурная стабильность и способность противостоять колебаниям напряжения источника питания.

Для разминки рассмотрим схемы простейших генераторов (источников) тока на транзисторах и операционных усилителях.


Рис.1

Схема источника тока на биполярном транзисторе — самая плохая. В ней присутствует полный букет недостатков — и температурная нестабильность, и зависимость тока от колебаний напряжения источника питания и наличие пресловутого эффекта Эрли (эффект влияния напряжения между коллектором и базой на ток коллектора).
Здесь входной делитель на резисторах R1, R2 задаёт ток базы транзистора Iб, выходной ток в первом приближении можно считать равным Iн = Iк≈β×Iб.

Схема на полевом транзисторе не столь чувствительна к нестабильности источника питания, однако имеет другой существенный недостаток — практическую невозможность заранее рассчитать выходной ток генератора из-за значительности разброса параметров данных типов полупроводников.
Максимальный ток данного типа источника равен начальному току стока при R1=0 (паспортная характеристика), минимальный ограничен падением напряжения на токозадающем резисторе R1.

Генераторы тока на операционных усилителях (инвертирующий слева, неинвертирующий справа) — вполне себе работоспособные устройства, которые являются близкими аналогами идеальных источников тока, и практически лишены недостатков, присущих транзисторным схемам.
Единственное, но существенное в отдельных случаях "но" состоит в том, что нагрузка является «плавающей», т.е. не подключённой никаким боком к земле.
Ток через нагрузку практически с 100% точностью описывается формулой Iн= Uвх/R1.

Размялись? Пришло время избавляться от недостатков простейших источников тока, обкашлянных нами выше.

Рис.2

Схемы стабилизаторов тока, представленные на Рис.2, будут полезны в устройствах, работающих с конечными потребителями, которые чувствительны не столько к стабильности напряжения, сколько к постоянству протекающего через них тока.
За примерами далеко ходить не надо — источники питания светодиодов, газоразрядных ламп, зарядные устройства для аккумуляторов и т.д. Все они требуют наличия на выходе постоянного, либо изменяющегося по определённому алгоритму тока.
Принцип работы приведённых схем предельно прост. При увеличении тока нагрузки пропорционально увеличивается и падение напряжения на токозадающем резисторе R1. При достижении уровня падения этого напряжения ≈0,6В, начинает открываться транзистор T1, снижая величину Uбэ (или Uзи) второго транзистора T2. Он начинает закрываться, соответственно, уменьшается и количество тока, протекающего через нагрузку.
Для схемы на биполярном транзисторе номинал резистора Rб следует выбирать из соображений Rб .
Для полевика, в силу его высокого входного сопротивления, величина резистора Rз1 может выбрана достаточно высокой (десятки килоом). Единственное, за чем надо зорко послеживать — максимально допустимое значение напряжения затвор-исток транзистора. Если оно меньше Еп, следует добавить дополнительный резистор Rз2 такого номинала, чтобы образованный делитель вогнал напряжение на затворе в допустимые пределы.
Выходной ток рассчитывается по простой формуле Iн≈0,6/ R1 .
В этих схемах нет температурной компенсации, изменение выходного тока составляет величину ≈ 0,3% на один °С.


Рис.3

Про схему токового зеркала, изображённую на Рис.3, смело можно сказать, что это базовая схема источника тока.
Резисторы в эмиттерных цепях транзисторов создают отрицательную обратную связь по току, что с одной стороны, приводит к улучшению термостабилизирующих свойств узла, а с другой, позволяет в широких пределах регулировать соотношения токов транзисторов Т1 и Т2.

Здесь ток Ik1 , задаваемый резистором R1:
Iк1≈(Eп-0,7)/(R1+ Rэ1) ,
а ток, протекающий в нагрузке:
Iн≈ Rэ1×(Eп-0,7)/(R1× Rэ2+ Rэ1× Rэ2) .


Рис.4

Для снижения зависимости выходного тока от колебаний напряжения питания широкое применение нашли источники тока (Рис.4), называемые двойным зеркалом тока.
Механизм работает следующим образом: Предположим, увеличилось напряжение питания. Тогда увеличивается и падение напряжения на резисторе R1. Это приводит к уменьшению потенциала базы транзистора VТ3, транзистор VТ3 призакроется, его ток Iэ3 уменьшится, соответственно уменьшится ток базы Iб2 и Iн тоже уменьшится и вернётся в исходное состояние.

Iк1≈(Eп-1,4)/(R1+ Rэ1) ,
Iн≈ Rэ1×(Eп-0,7)/(R1× Rэ2+ Rэ1× Rэ2) .


Рис.5

Источник тока, представленный на Рис. 5, называется схемой токового зеркала Уилсона и обеспечивает высокую степень постоянства выходного тока за счёт подавления проявлений эффекта Эрли (эффект влияния напряжения между коллектором и базой на ток коллектора).
Транзисторы T1 и T2 в этой схеме включены так же, как в обычном токовом зеркале, но благодаря транзистору T3 потенциал коллектора токозадающего Т2 фиксирован и не влияет на выходной ток.

Все формулы аналогичны предыдущему описанию:
Iк1≈(Eп-1,4)/(R1+ Rэ1) ,
Iн≈ Rэ1×(Eп-0,7)/(R1× Rэ2+ Rэ1× Rэ2) .


Рис.6

Каскодный генератор тока, изображённый на Рис. 6, обладает достоинствами, связанными с очень высоким внутренним сопротивлением и значительным ослаблением эффекта Эрли. Динамическое внутреннее сопротивление такого отражателя тока превышает величину в несколько МОм.

Легко заметить, что для всех типов приведённых токовых зеркал формула для расчёта выходного тока — одна и та же. Формула приблизительная, не учитывающая влияние на расчётные показатели незначительных величин базовых токов транзисторов, однако дающая возможность с погрешностью, не превышающей 5-7%, рассчитать величины токозадающих элементов.
При необходимости сгенерить ток обратного направления, следует перевернуть схему вверх ногами и заменить n-p-n транзисторы на полупроводники обратной проводимости.

И по традиции приведу таблицу, позволяющую не сильно утруждаться, при желании воплотить описанные узлы в реальную жизнь.

РАСЧЁТ ТОКОЗАДАЮЩИХ ЭЛЕМЕНТОВ ИСТОЧНИКОВ ТОКА НА БИПОЛЯРНЫХ ТРАНЗИСТОРАХ.

Выбор схемы источника тока&nbsp Сопротивление резистора R1 (кОм) Сопротивление резистора Rэ1 (кОм) Сопротивление резистора Rэ2 (кОм) Напряжение питания (В) Выходной ток Iн Задающий ток Ik1

Источники тока на полевых транзисторах, в связи со значительностью разброса параметров данного типа полупроводников, практическое применение получили в основном при производстве аналоговых интегральных микросхем. При этом при использовании МОП-структур полевых транзисторов, схемотехника токовых зеркал практически не отличается от приведённых выше источников тока на биполярных собратьях.

Рис.6

Проектировать источники тока на дискретных полевых транзисторах — занятие, на мой взгляд, довольно нецелесообразное.
Другое дело — специально разработанные полупроводники, называемые токостабилизирующими диодами (CRD), в основе которых лежит полевой транзистор с каналом n-типа.

Рис.7

Полевые диоды имеют только два вывода и оптимизированы с точки зрения вольт-амперных характеристик. При их изготовлении можно достичь нулевого температурного коэффициента, объединяя CRD с резистором, имеющим тот же самый, но противоположного знака температурный коэффициент.
Токостабилизирующие диоды не очень известны в широких массах радиолюбительского сообщества, но тем временем активно выпускаются буржуйскими промышленниками, имеют приличную номенклатуру токов и достаточно широкий диапазон рабочих напряжений.

А на следующей странице продолжим тему — посвятим её источникам тока на операционных усилителях, а также преобразователям напряжение-ток на ОУ и транзисторах.

Улучшение характеристик ИТ……………………………………. …. 8

Источник тока на биполярных транзисторах (расчет)…………..…. ….11

Источник тока (стабилизатор тока) – этоустройство,автоматическиобеспечивающееподдержание тока нагрузочногоустройства с заданной степенью точности.

Ток нагрузочного устройства может сильно изменятьсяпривоздействиивнешнихдестабилизирующихфакторов,каковымиявляются: изменение напряжения в сети, изменение температуры, колебаниечастотытокаит.д. Чтобыэтифакторынеоказываливлияниянаработуэлектрических устройств, применяют стабилизаторы или по другому источники тока.

Хотя источники тока не столь известны, они не менее полезны и важны, чем источники напряжения. Источники тока представляют собой прекрасное средство для обеспечения смещения транзисторов, и кроме того, незаменимы в качестве активной нагрузки для усилительных каскадов с большим коэффициентом усиления и в качестве источников питания эмиттеров для дифференциальных усилителей. Источники тока необходимы для работы таких устройств, как интеграторы, генераторы пилообразного напряжения. В схемах усилителей и стабилизаторов они обеспечивают широкий диапазон напряжений. Источники тока используются в интегральных схемах для смещения рабочих точек транзисторов.И наконец, источники постоянного тока требуются в некоторых областях, не имеющих прямого отношения к электронике, например в электрохимии, электрофорезе.

Назначение источника тока – поддерживать неизменный ток при изменении сопротивления нагрузки. Как известно, внутреннее сопротивление идеального источника тока бесконечно велико. В реальной цепи этого достичь невозможно: такой источник должен иметь бесконечную мощность. Кроме того, реальные схемы способны поддерживать неизменный ток только в определенном диапазоне изменения сопротивления нагрузки. Качество реального источника тока тем выше, чем больше его внутреннее сопротивление.

Схема простейшего источника тока показана на рис. 2.20. При условии что (иными словами, ), ток сохраняет почти постоянное значение и равен приблизительно . Если нагрузкой является конденсатор, то, при условии что , он заряжается с почти постоянной скоростью, определяемой начальным участком экспоненты, характерной для данной RС-цепи.

Простейшему резистивному источнику тока присущи существенные недостатки. Для того чтобы получить хорошее приближение к источнику тока, следует использовать большие напряжения, а при этом на резисторе рассеивается большая мощность. Кроме того, током этого источника трудно управлять в широком диапазоне с помощью напряжения, формируемого где-либо в другом узле схемы.

Транзисторный источник тока

Очень хороший источник тока можно построить на основе транзистора (рис. 2.21). Работает он следующим образом: напряжение на базе поддерживает эмиттерный переход в открытом состоянии: .

. Так как для больших значений коэффициента , то

независимо от напряжения до тех пор, пока транзистор не перейдет в режим насыщения .

Смещение в источнике тока.

Напряжение на базе можно сформировать несколькими способами. Хороший результат дает использование делителя напряжения, если он обеспечивает достаточно стабильное напряжение. Как и в предыдущих случаях, сопротивление делителя должно быть значительно меньше сопротивления схемы со стороны базы по постоянному току Можно воспользоваться также зенеровским диодом и использовать для смещения источник питания , а можно взять несколько диодов, смещенных в прямом направлении и соединенных последовательно, и подключить их между базой и соответствующим источником питания эмиттера. На рис. 2.22 показаны примеры схем смещения. В последнем примере (рис. 2.22,б) транзистор р-п-р -типа питает током заземленную нагрузку (он-источник тока). Остальные примеры (в которых используются транзисторы п-р-п -типа) правильнее было бы называть «поглотителями» тока, но принято называть все схемы такого типа источниками тока. [Название «поглотитель» и «источник» связано с направлением тока; если ток поступает в какую-либо точку схемы, то это источник, и наоборот]. В первой схеме сопротивление делителя напряжения составляет приблизительно 1,3 кОм и очень мало по сравнению с сопротивлением со стороны базы, составляющим кОм (для ). Любое изменение коэффициента β, связанное с изменением напряжения на коллекторе, не повлияет существенным образом на выходной ток, так как соответствующее изменение напряжения на базе совсем мало. В двух других схемах резисторы в цепи смещения выбраны так, чтобы протекающий ток составлял несколько миллиампер,-этого достаточно, чтобы диоды были открыты.

Источник тока передает в нагрузку постоянный ток только до определенного конечного напряжения на нагрузке. В противном случае источник тока был бы способен генерировать бесконечную мощность. Диапазон выходного напряжения, в котором источник тока ведет себя как следует, называется рабочим диапазоном. Для рассмотренных только что транзисторных источников тока рабочий диапазон определяется из того, что транзистор должен находиться в активном режиме работы. Так, в первой схеме напряжение на коллекторе можно понижать до тех пор, пока не будет достигнут режим насыщения, т. е. до +12В. Вторая схема, с более высоким напряжением на эмиттере, сохраняет свойства источника лишь до значения напряжения на коллекторе, равного приблизительно +5,2В.

Во всех случаях напряжение на коллекторе может изменяться от значения напряжения насыщения до значения напряжения питания. Например, последняя схема работает как источник тока в диапазоне напряжения на нагрузке, ограниченном значениями 0 и +8,6В. Если в нагрузке используются батареи или собственные источники питания, то напряжение на коллекторе может быть больше, чем напряжение источника питания. При использовании такой схемы рекомендуется следить за тем, чтобы не возник пробой транзистора (напряжение не должно превышать значение напряжение пробоя перехода коллектор-эмиттер) и не рассеивалась излишняя мощность (определяемая величиной произведения ). В разд. 6.07 вы увидите, что для мощных транзисторов область безопасной работы определяется специально. В источнике тока напряжение на базе не обязательно должно быть фиксированным. Если предусмотреть возможность изменения напряжения , то получим программируемый источник тока. Если выходной ток должен плавно отслеживать изменения входного напряжения, то размах входного сигнала (напоминаем, что строчными буквами мы договорились обозначать изменения) должен быть небольшим, таким, чтобы напряжение на эмиттере никогда не уменьшалось до нуля. В таком источнике тока изменение выходного тока будет пропорционально изменениям входного напряжения.

Недостатки источников тока.

Наблюдаются эффекты двух видов:

1. При заданном токе коллектора и напряжение , и коэффициент (эффект Эрли) несколько изменяются при изменении напряжения коллектор-эмиттер. Изменение напряжения , связанное с изменением напряжения на нагрузке, вызывает изменение выходного тока, так как напряжение на эмиттере (а следовательно, и эмиттерный ток) изменяется, даже если напряжение на базе фиксировано. Изменение значения коэффициента приводит к небольшим изменениям выходного (коллекторного) тока при фиксированном токе эмиттера, так как ; кроме того, немного изменяется напряжение на базе в связи с возможным изменением сопротивления источника смещения, обусловленного изменениями коэффициента (а следовательно, и тока базы). Эти изменения незначительны. Например, изменение выходного тока для схемы, представленной на рис. 2.22, а, составляет приблизительно 0,5% для транзистора типа 2N3565. В частности, при изменении напряжения на нагрузке от 0 до 8 В эффект Эрли обусловливает изменение тока на 0,5%, а нагрев транзистора на 0,2%. Изменение коэффициента вносит дополнительный вклад в изменение выходного тока — 0,05% (для жесткого делителя напряжения). Все эти изменения приводят к тому, что источник тока работает хуже, чем идеальный: выходной ток немного зависит от напряжения и, следовательно, его сопротивление не бесконечно. В дальнейшем вы узнаете, что есть методы, которые позволяют преодолеть этот недостаток.

2. Напряжение и коэффициент зависят от температуры. В связи с этим при изменении температуры окружающей среды возникает дрейф выходного тока. Кроме того, температура перехода изменяется при изменении напряжения на нагрузке (в связи с изменением мощности, рассеиваемой транзистором) и приводит к тому, что источник работает не как идеальный. Изменение напряжения в зависимости от температуры окружающей среды можно скомпенсировать с помощью схемы, показанной на рис. 2.23. В этой схеме падение напряжения между базой и эмиттером транзистора компенсируется падением напряжения на эмиттерном переходе который имеет такие же температурные характеристики. Резистор играет роль нагрузки для , необходимой для задания втекающего тока базы транзистора .

Улучшение характеристик источника тока.

Вообще говоря, изменение напряжения , вызванное как влиянием температуры (относительное изменение составляет приблизительно – ), так и зависимостью от напряжения (эффект Эрли оценивается величиной ), можно свести к минимуму, если установить напряжение на эмиттере достаточно большим (по крайней мере 1 В), тогда изменение напряжения на десятые доли милливольта не приведет к значительному изменению напряжения на эмиттерном резисторе (напомним, что схема поддерживает постоянное напряжение на базе). Например, если (т.е. к базе приложено напряжение 0,7 В), то изменение напряжения на 10 мВ вызывает изменение выходного тока на 10%, если же , то такое же изменение вызывает изменение тока на 1%. Однако, не стоит заходить слишком далеко. Напомним, что нижняя граница рабочего диапазона определяется напряжением на эмиттере. Если в источнике тока, работающем от источника питания +10В, напряжение на эмиттере сделать равным +5В, то диапазон выхода будет равен немного менее 5 В (напряжение на коллекторе может изменяться от до , т. е. от 5,2 до 10 В).

На рис. 2.24 показана схема, которая существенно улучшает характеристики источника тока.

Источник тока работает, как и прежде, но напряжение на коллекторе фиксируется с помощью эмиттера . Ток, текущий в нагрузку, такой же, как и прежде, так как коллекторный (для ) и эмиттерный токи приблизительно равны между собой (из-за большого значения ). В этой схеме напряжение (для) не зависит от напряжения на нагрузке, а это значит, что устранены изменения напряжения , обусловленные эффектом Эрли и температурой. Для транзисторов типа 2N3565 эта схема дает изменение тока на 0,1% при изменении напряжения на нагрузке от 0 до 8 В; для того чтобы схема обеспечивала указанную точность, следует использовать стабильные резисторы с допуском 1%. (Кстати, эту схему используют в высокочастотных усилителях, где она известна под названием «каскод»). В дальнейшем вы познакомитесь со схемами источников тока, в которых используются операционные усилители и обратная связь, и в которых

также решена задача устранения влияния изменений на выходной ток.

Влияние коэффициента можно ослабить, если выбрать транзистор с большим значением тогда ток базы будет вносить незначительный вклад в ток эмиттера.

На рис. 2.25 показан еще один источник тока, в котором выходной ток не зависит от напряжения питания. В этой схеме напряжение транзистора падая на резисторе , определяет выходной ток независимо от напряжения

С помощью резистора устанавливается смещение транзистора и потенциал коллектора , причем этот потенциал меньше, чем напряжение , на удвоенную величину падения напряжения на переходе; тем самым уменьшается влияние эффекта Эрли. В этой схеме нет температурной компенсации; напряжение на уменьшается приблизительно на 2,1 мВ/ и вызывает соответствующее изменение выходного тока (0,3%/).

На рис. 2.5, а приведена схема простейшего ГСТ на биполярном транзисторе и его эквивалентная схема (рис. 2.5, б ). В качестве стабилизирующего элемента используется выходная цепь транзистора (промежуток эмиттер-коллектор), имеющая вольтамперную характеристику требуемого вида (рис. 2.6).

Рабочая точка (ток I н ) определяется пересечением характеристики и нагрузочной линии (точка А). При изменении R н рабочая точка перемещается по характеристике. Например, при уменьшении сопротивления нагрузки на величину ΔR н , рабочая точка переместится в точку В, что приведет к увеличению тока нагрузки на (рис. 2.6). Чем больше выходное дифференциальное сопротивление транзистора R i = Δ u / Δ i (чем более горизонтально идет характеристика), тем меньше изменение тока нагрузки I н .

Так как на участке стабилизации (пологая область) характеристика транзистора аппроксимируется выражением

i к = I 0 + u кэ / R i , (2.3)

Δ I н / I н = ΔR н / R i . (2.4)

Таким образом, в транзисторном стабилизаторе стабилизация тока определяется величиной R i (эквивалент R на рис. 2.4), которая может достигать десятков и сотен килоом.

Величину тока нагрузки I н можно задавать, изменяя режим работы транзистора по постоянному току с помощью резисторов R б1 иR б2 . Часто в цепь эмиттера транзистора включают резистор R э , улучшающий стабильность и увеличивающий сопротивление R i .

Источник тока на биполярных транзисторах (на основе схемы с общим эмиттером)

Т. к. в цепи не будут протекать большие токи я выбрал источник тока на биполярном транзисторах из-за его простоты, в схеме всего лишь один транзистор и три резистора .

В роли генератора тока здесь выступает транзистор VT. Его рабочий режим задаётся источником опорного напряжения на R1 и подстроечным резистором R2. С помощью этого резистора можно установить необходимый ток Iк.
Диапазон сопротивлений нагрузки и генерируемого тока определяется напряжением источника питания транзистора. R 3 режимное сопротивление.

Простейшим источником тока является схема с общим эмиттером и отрицательной обратной связью по току (рис. 2.3.1). Нагрузка в цепи коллектора.

.

, .

Рассчитать источник тока (рис. 2.3.1), обеспечивающий ток коллектора . Напряжение источника питания , коэффициент усиления тока базы

Выберем напряжения коллектора и эмиттера равными приблизительно одной третьей напряжения источника (правило одной трети). Напряжение базы . Напряжение эмиттера .
Полагая, находим сопротивление эмиттерного резистора

Ток делителя напряжения – . Входное сопротивление делителя

.

Поскольку напряжение базы

,

сопротивления резисторов должны быть равны: . Максимальное значение сопротивления резистора , при котором транзистор остается в активном режиме.

Напряжение на сопротивлении нагрузки .

Исходный полупроводниковый материал, на основе которого изготовлен транзистор: кремний (Si)
Структура полупроводникового перехода: npn

Здесь много схем на недорогой элементной базе. Блоки питания, преобразователи и т.п.

1. Схема зарядного устройства от аккумуляторного фонаря (опасно для аккумуляторов)

2. Стабилизатор напряжения на ПТ

3. Источники стабильного тока

4. Источник тока

5. Стабилизатор напряжения

6. Источник тока

7. Двухполюсный источник тока

8. Источники стабильного тока

9. Зарядное устройство

10. Преобразователь напряжения

11. Очень хорошее зарядное устройство

12. Вариант замены высоковольтного стабилитрона

13. Простой индикатор радиационной опасности

14. Зарядное устройство

15. Преобразователь напряжения

16. Источник стабильного тока

17. Аналог стабилитрона

18. Стабилизатор напряжения с ограничением тока — источник тока

19. Стабилизатор напряжения для зарядного устройства на солнечной батарее

20. Компенсация пульсаций в блоке питания

21. Зарядное устройство с питанием от свободной энергии

22. Стабилизатор напряжения на логическом элементе

23. Простой источник стабильного тока

24. Импульсный стабилизатор конденсаторного БП

25. Бестрансформаторный источник питания часов на оптронах

26. Структурная схема конденсаторного преобразователя напряжения с умножением тока

27. Ёмкостный преобразователь напряжения

28. Источник тока на интегральном стабилитроне

Оцените статью
gidpotolok.ru
Добавить комментарий